
TRAC-M-TR-13-050

14 June 2013

Mission Command Analysis Using
Monte Carlo Tree Search

TRADOC Analysis Center - Monterey
700 Dyer Road

Monterey, California 93943-0692

This study cost the
Department of Defense

approximately $191,000 expended
by TRAC in Fiscal Year 13.
Prepared on 20130618 TRAC

Project Code # 631

DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited. This
determination was made on 14 June 2013.



This page intentionally left blank.

i



TRAC-M-TR-13-050

14 June 2013

Mission Command Analysis Using
Monte Carlo Tree Search

MAJ Christopher Marks
Dr. Christian Darken

Dr. Arnie Buss
Dr. Kyle Lin

LTC Jonathan Alt

TRADOC Analysis Center - Monterey
700 Dyer Road

Monterey, California 93943-0692

Prepared by: Approved by:

Christopher E. Marks Jonathan K. Alt
Analyst LTC, IN

TRAC-MTRY Director, TRAC-MTRY

DISTRIBUTION STATEMENT: Approved for public release; distribution is unlimited. This
determination was made on 14 June 2013.

ii



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
 

2. REPORT TYPE
 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

 
 

5b. GRANT NUMBER 
 
5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 5d. PROJECT NUMBER 
 
5e. TASK NUMBER 
 
5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 
 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   
   
  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
 

15. SUBJECT TERMS
 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 

a. REPORT 
 

b. ABSTRACT 
 

c. THIS PAGE
 

  
 

19b. TELEPHONE NUMBER (include area 
code)
 

Standard Form 298 (Re . 8-98)v
Prescribed by ANSI Std. Z39.18

14-06-2013 Technical Report 15-09-2012 --14-06-2013

Mission Command Analysis Using Monte Carlo Tree Search

MAJ Christopher Marks, Dr. Christian Darken, Dr. Arnie Buss, Dr. Kyle Lin, LTC
Jonathan Alt

631

Training and Doctrine Command Analysis Center---Monterey
700 Dyer Road
Monterey, CA 93943-0692 TRAC-M-TR-13-050

Training and Doctrine Command Analysis Center---Headquarters
255 Sedgwick Avenue
Fort Leavenworth, KS 66027-2345

TRAC

Approved for public release; distribution is unlimited.

In this project examine applications of Monte Carlo tree search, an artificial intelligence algorithm, in military simulation
environments and assignment and scheduling problems with the goal of enhancing mission command analysis capabilities. We
provide a review of recent literature on Monte Carlo tree search methods and then develop two algorithms that adapt the
Monte Carlo tree search algorithm, traditionally applied to deterministic, fully observable games, to military simulations, which
are typically stochastic and partially observable in nature. We develop, test, and comment on the results of two prototype
implementations: one in a simple simulation environment with the objective of conserving friendly strength while depleting
opposing forces, and the other focused on producing an optimal or near optimal assignment and schedule of aerial platforms
against a set of missions with known values. Finally, we conclude by making recommendations for future implementations and
applications in the COMBATXXI and JDAFS simulation environments, and suggest ways of addressing some of the
computation challenges associated with Monte Carlo tree search and recursive simulation.

Artificial Intelligence, Military Simulation, Monte Carlo Tree Search.

Unclassified Unclassified Unclassified SAR 93

MAJ Christopher E. Marks

(831) 656-3751



Table of Contents

Report Documentation iii

List of Figures vii

List of Tables viii

List of Acronyms and Abbreviations ix

1. Introduction 1
1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Mission command . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2. Military simulations . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3. Monte Carlo Tree Search . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Constraints, Limitations, and Assumptions . . . . . . . . . . . . . . . . . 4

1.3.1. Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.3. Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. Project Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Monte Carlo Tree Search 7
2.1. MCTS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1. The Tree Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2. The Default Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3. Algorithm Example . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. The challenges in implementing MCTS into military simulations . . . . . 12

3. Algorithm and Prototype Development 15
3.1. MCTS in Stochastic Games with Imperfect State Information . . . . . . 15

3.1.1. The k-Sample Partial Observation MCTS Algorithm . . . . . . . 16
3.1.2. The Incrementing Sample Partial Observation (ISPO) Algorithm 17

3.2. Prototype Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1. Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2. Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3. Tree Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4. Default Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3. Fires Allocation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.1. Algorithm Notation and Assumptions . . . . . . . . . . . . . . . . 22
3.3.2. Algorithm Development . . . . . . . . . . . . . . . . . . . . . . . 25

iv



4. MCTS Implementation in ASC-U 27
4.1. The MCTS Algorithm for ASC-U . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1. Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.2. Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.3. Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1.4. Default Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. ASC-U Prototype in MATLAB . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1. Prototype Algorithm and Data Requirements . . . . . . . . . . . 30

4.3. Testing and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.1. First test: Verification Using a Simple Input Scenario . . . . . . . 31
4.3.2. Second Test: Examining the Trade-off Between Performance and

Computational Time . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4. ASC-U Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5. Future Implementation Directions 51
5.1. JDAFS Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1. Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.2. Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.3. Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.4. Default Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.5. Status of Implementation . . . . . . . . . . . . . . . . . . . . . . 53
5.1.6. Potential Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2. CombatXXI Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.1. Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2. Reward Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.3. Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.4. Default Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.5. Status of Implementation . . . . . . . . . . . . . . . . . . . . . . 56
5.2.6. Potential Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6. Summary and Conclusions 57
6.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendices

Appendix A. Fires Allocation Algorithm in MATLAB A-1
A.1. Algorithm Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1
A.2. Example Use Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-4

Appendix B. Prototype MCTS ASCU Implementation in MATLAB B-1
B.1. ASCU.m Script File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1
B.2. MCTS Execution Functions . . . . . . . . . . . . . . . . . . . . . . . . . B-4

B.2.1. ASCUMCTS.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-4
B.2.2. ASCUdefault.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7

v



B.2.3. createchilds.m . . . . . . . . . . . . . . . . . . . . . . . . . . . B-8
B.2.4. MDupdate.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-10

B.3. Analysis and Documentation Functions . . . . . . . . . . . . . . . . . . . B-11
B.3.1. missionplot.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-12
B.3.2. allassignmentplot.m . . . . . . . . . . . . . . . . . . . . . . . . B-12
B.3.3. assignmentplot.m . . . . . . . . . . . . . . . . . . . . . . . . . . B-14
B.3.4. singleassignmentplot.m . . . . . . . . . . . . . . . . . . . . . . B-14
B.3.5. document.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-15

References REF-1

vi



List of Figures

1.1. MCTS project methodology. . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1. MCTS example, first iteration. . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2. MCTS example, second iteration. . . . . . . . . . . . . . . . . . . . . . . 10
2.3. MCTS example, third iteration. . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. MCTS example, fourth iteration. . . . . . . . . . . . . . . . . . . . . . . 11

3.1. An example kSPO MCTS search tree. . . . . . . . . . . . . . . . . . . . . 16
3.2. Illustration of the prototype scenario. . . . . . . . . . . . . . . . . . . . . 19
3.3. Illustration of the “concentrate” action. . . . . . . . . . . . . . . . . . . . 20
3.4. Illustration of the “hunt” action. . . . . . . . . . . . . . . . . . . . . . . 21

4.1. A three mission-area example, depicted in time. . . . . . . . . . . . . . . 27
4.2. Given two platforms and the mission areas depicted in figure 4.1, a depic-

tion of the resulting search tree. . . . . . . . . . . . . . . . . . . . . . . . 28
4.3. Visual depiction of schedule for case 1. . . . . . . . . . . . . . . . . . . . 33
4.4. Visual depiction of schedule for case 2. . . . . . . . . . . . . . . . . . . . 34
4.5. Visual depiction of schedule for case 3. . . . . . . . . . . . . . . . . . . . 36
4.6. Box plots of objective values for cases 4-7. . . . . . . . . . . . . . . . . . 41
4.7. Visual depiction of schedule for case 4. . . . . . . . . . . . . . . . . . . . 44
4.8. Visual depiction of schedule for case 5. . . . . . . . . . . . . . . . . . . . 46
4.9. Visual depiction of schedule for case 6. . . . . . . . . . . . . . . . . . . . 48
4.10. Visual depiction of schedule for case 7. . . . . . . . . . . . . . . . . . . . 50

5.1. The coalition force and threat organizations for the JDAFS scenario. . . 51
5.2. Concept for the JDAFS scenario. . . . . . . . . . . . . . . . . . . . . . . 52
5.3. COMBATXXI MCTS test scenario. . . . . . . . . . . . . . . . . . . . . . 54
5.4. Decision to engage with the rifle. . . . . . . . . . . . . . . . . . . . . . . 55
5.5. Decision to engage with grenades. . . . . . . . . . . . . . . . . . . . . . . 56

B.1. Example allassignmentsplot.m output for multiple platforms. . . . . . B-13
B.2. Example singleassignmentsplot.m output for platform 7 in case 5. . . B-15

vii



List of Tables

4.1. Platform inputs for cases 1-3. . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2. Mission inputs for cases 1-3. . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3. Performance inputs for cases 1-3. . . . . . . . . . . . . . . . . . . . . . . 32
4.4. UCT constant and computational budget for cases 1-3. . . . . . . . . . . 32
4.5. Objective values and runtimes for cases 1-3. . . . . . . . . . . . . . . . . 32
4.6. Schedule produced for case 1. . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7. Schedule produced for case 2. . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8. Schedule produced for case 3. . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9. Computational budget for cases 4-7. . . . . . . . . . . . . . . . . . . . . . 37
4.10. Platform inputs for cases 4-7. . . . . . . . . . . . . . . . . . . . . . . . . 38
4.11. Mission inputs for case 4-7. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.12. Performance inputs for case 4-7. . . . . . . . . . . . . . . . . . . . . . . . 39
4.13. Example mission assignments and objective values for cases 4-7. . . . . . 42
4.14. Schedule produced for case 4. . . . . . . . . . . . . . . . . . . . . . . . . 43
4.15. Schedule produced for case 5. . . . . . . . . . . . . . . . . . . . . . . . . 45
4.16. Schedule produced for case 6. . . . . . . . . . . . . . . . . . . . . . . . . 47
4.17. Schedule produced for case 7. . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



List of Acronyms and Abbreviations

AI Artificial Intelligence
ASC-U Assignment and Scheduling Capability for Unmanned

Aerial Vehicles
COA Course of Action
COP Combat Outpost
CVO Constrained Value Optimization
DFP Deployed Force Protection
FARP Forward area refueling & rearming point
JDAFS Joint Dynamic Allocation of Fires and Sensors
LRS Launch and Recovery Site
MCTS Monte Carlo Tree Search
MD Mission Demand
MOVES Modeling, Virtual Environments, and Simulation
NPS Naval Postgraduate School
TRAC Training and Doctrine Command Analysis Center
TRAC-MRO Training and Doctrine Command Analysis Center Meth-

ods and Research Office
TRAC-MTRY Training and Doctrine Command Analysis Center—

Monterey
TRAC-WSMR Training and Doctrine Command Analysis Center—

White Sands Missile Range
XML Extensible Markup Language

ix



1. Introduction

The purpose of this technical report is to record the modeling approach, analysis, results
and conclusions from the “Mission command analysis using Monte Carlo Tree Search”
project.

1.1. Background

In the fall of 2012, the Training and Doctrine Command Analysis Center (TRAC) Methods
and Research Office (TRAC-MRO) sponsored the Training and Doctrine Command
Analysis Center—Monterey (TRAC-MTRY) to research the potential of employing Monte
Carlo Tree Search (MTCS) methods in military simulations for the purpose of analyzing
mission command. In this section we provide a brief overview of mission command,
military simulations, and Monte Carlo Tree Search methods.

1.1.1. Mission command

From the Army field manual on operations, FM 3-0,

Mission command is the conduct of military operations through decentralized
execution based on mission orders. Network technology has affected the
execution of mission command, and these network capabilities have been
included in military simulation models. Mission command gives subordinates
the greatest possible freedom of action. Commanders focus their orders on the
purpose of the operation rather than on the details of how to perform assigned
tasks. They delegate most decisions to subordinates. This minimizes detailed
control and empowers subordinates’ initiative. Mission command emphasizes
timely decision making, understanding the higher commander’s intent, and
clearly identifying the subordinates’ tasks necessary to achieve the desired end
state. It improves subordinates’ ability to act effectively in fluid, chaotic
situations [7].

FM 3-0 establishes four elements of mission command:

• Commander’s intent.

• Subordinate’s initiative.

• Mission orders, which include—

– A brief concept of operations.

– Minimum necessary control measures.

1



• Resource allocation.

1.1.2. Military simulations

Military simulation environments generally attempt to model each of these elements.
Subordinate units demonstrate initiative by reacting to simulation events as they occur,
making decisions based on some rules, algorithms, or optimizations built into the
simulation. Mission orders, including a concept of operations and controls, as well as
resource allocation, are built into the simulated scenario. Finally, the commander’s intent
not only helps to establish the rules governing subordinate decision-making initiative, but
also provides the criteria for measuring a unit’s overall effectiveness.

Analysis of mission command and tactical decision making in military simulation
environments is often limited to end-of-run metrics. From these metrics, it is not always
apparent which decisions were important, i.e., they played a significant role in shaping the
final outcome of the simulation, especially pertaining to how well a unit accomplished its
mission and met the commander’s intent.

1.1.2.1. Joint Dynamic Allocation of Fires and Sensors (JDAFS)

The Joint Dynamic Allocation of Fires and Sensors (JDAFS) simulation environment was
originally developed by TRAC-MTRY in conjunction with the Naval Postgraduate School
(NPS). It is a low-resolution, entity-level simulation designed to be rapidly configured and
executed [3]. JDAFS employs event graphs, a discrete event simulation methodology, to
simulate combat scenarios. It uses constrained value optimization models (CVOs) to
allocate fires to targets and sensor platforms to potential areas of interest, and schedules
events based on the outputs of these optimizers. It is relatively easy to create a scenario in
extensible markup language (XML) or MicrosoftTM Access and execute it in JDAFS, and
scenarios generally run much faster than they would in other simulation environments.

1.1.2.2. Assignment and Scheduling Capability for Unmanned Aerial Vehicles
(ASC-U)

The Assignment and Scheduling Capability for Unmanned Aerial Vehicles (ASC-U) is a
scheduling tool that employs approximate dynamic programming methods, integer
programming, and simulation. It uses the JDAFS simulation environment to model a set of
aerial platforms including their capabilities, limitations, and logistical requirements.
ASC-U finds a feasible assignment of these aerial platforms to a set of input mission
demands using a rolling horizon approach. For a fixed time horizon, ASC-U solves an
assignment optimization problem to find the best allocation of available aircraft to mission
demands. It then begins executing this allocation in the simulation until the optimization
interval (an input) has expired, at which point it runs the assignment optimization problem
again and updates the platform allocation. The user defines the valuation rates of each
sensor against each mission demand, which are multiplied by the platform’s time covering
the mission demand to determine the coefficients in the objective function of the

2



assignment optimization [1]. ASC-U has been used in several TRAC studies, including
studies involving the scheduling of manned aerial assets.

1.1.2.3. COMBATXXITM

According to the COMBATXXI documentation [11], this simulation environment is a
“joint, high-resolution, closed-form, stochastic, discrete event, entity level structure
analytical combat simulation.” It was developed and is supported by the Training and
Doctrine Command Analysis Center—White Sands Missile Range (TRAC-WSMR) with
collaboration from other centers and organization. It is designed to simulate brigade and
lower echelon operations, but incorporates supporting assets from higher echelons. The
purpose of COMBATXXI is to provide the needed resolution and modeling to support a
variety of types of analyses.

1.1.3. Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is a method that explores an action space in search of
good or near-optimal solutions. The method attempts to balance exploring decision paths
that have not yet been simulated and exploiting decision paths that are known to provide
favorable results [2]. The goal of MCTS is to get a good idea of what the optimal or
near-optimal decision paths are without having to enumerate and/or simulate the entire
action space (an intractable alternative for all but the smallest game trees).

In military simulation environments, MCTS might be able to provide:

• New behavior models.

– Decision theoretic style.

– No engineering by an expert required.

– Action choices explainable in mathematical terms.

• Component of naturalistic decision-making models (“mental simulation”).

• Insight into decision spaces.

– How many courses of action (COAs) are good?

– How many COAs lead to disaster?

1.2. Problem Statement

To apply and evaluate Monte Carlo Tree Search (MCTS) methods to tactical
decision situations in a simulated environment in order to expand mission
command analysis capabilities.

3



1.3. Constraints, Limitations, and Assumptions

1.3.1. Constraints

• Complete by 01 July 2013.

• No contracting (constraint added 15 January 2013).

1.3.2. Limitations

• We will carry out all experimentation in TRAC-owned simulation environments for
which we can obtain programmer support and in prototype implementations.

• Rewards functions will be defined by the study team.

1.3.3. Assumptions

• Conclusions will generalize to other scenarios in other simulations.

1.4. Project Team

• Sponsor: Mr. Paul Works, TRAC Research Director, MRO.

• Project Lead: MAJ Chris Marks (TRAC-MTRY).

• Supporting Analyst: LTC John Alt (TRAC-MTRY).

• Supporting Analyst: Mr. Blane Wilson (Training and Doctrine Command
Analysis Center—White Sands Missile Range [TRAC-WSMR]).

• NPS Faculty: Dr. Chris Darken.

• NPS Faculty: Dr. Arnie Buss.

• NPS Faculty: Dr. Kyle Lin.

• Programmer: Mr. Terry Norbraten (NPS Modeling, Virtual Environments and
Simulation [MOVES] Institute, JDAFS/ASC-U).
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1.5. Methodology

We executed this project in four major efforts:

1. Initial implementation.

2. Scenario and algorithm refinement.

3. Development of a fires allocation algorithm (supporting effort).

4. Implementations.

5. Test and evaluation.

The initial implementation effort included the original problem definition work, literature
review, and decisions on how to “discretize” a state space and action space in a military
simulation environment. These initial ideas would be built into a simple, prototype MCTS
implementation. In parallel with the MCTS prototype, the team developed a fires
allocation algorithm for future integration with MCTS implementations. With insights
gleaned from the prototype MCTS implementation, the team moved on to refine the
MCTS application scenario and algorithm for use in a military simulation environments.
After considering different environments and in response to changes in programmer
resources available, the team turned its focus on ASC-U as the initial simulation
environment in which to implement MCTS. This effort included building the code
necessary to implement MCTS into a military simulation environment. Finally, once the
team had a working MCTS implementation, the team conducted some basic tests to
determine the value of MCTS as a tool to analyze mission command in future applications.
Figure 1.1 depicts the methodology for this project.

1.6. Organization

This chapter gives the background and problem definition for this project. In chapter 2, we
give a more in-depth overview of the MCTS algorithm and some of its existing
applications, and conclude with some of the challenges involved with implementing MCTS
into military simulations. Chapter 3 provides our answers to these challenges, including
modifications to existing MCTS methods and a fires allocation algorithm developed as a
supporting effort in this project. We also present our prototype implementation along with
the insights it provides in chapter 3. In chapter 4 we describe the application of MCTS in
ASC-U and discuss the results of this implementation. Chapter 5 develops implementation
algorithms and scenarios for JDAFS and COMBATXXI for future research efforts. Finally,
in chapter 6 we conclude this report with a summary of results and insights into the
applicability of MCTS in military simulation.
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Figure 1.1: MCTS project methodology.
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2. Monte Carlo Tree Search

In this chapter we provide a more detailed look at the MCTS algorithm and its current
applications and discuss it major challenges with implementation into a military simulation
environment.

2.1. MCTS Algorithm

Monte Carlo Tree Search is a method that applies sampling and simulation to find optimal
or near optimal decisions in a discrete, finite action space. MCTS has had significant
impact in the artificial intelligence (AI) community, primarily because of its success at
identifying good moves in computer “Go,” a virtual version of an ancient Chinese board
game. Previously, computer Go had presented a difficult challenge to the AI community.
Like chess and many other board games, the huge state and action space makes it
impossible to enumerate the entire game tree. However, unlike chess and many other board
games it is very difficult to place objective value measures on certain moves or board
positions in Go. This characteristic made it very difficult for AI algorithm developers to
build a virtual Go player capable of matching human competence. The Monte Carlo Tree
Search method provided the answer to this difficult challenge, providing a decision
algorithm capable of competing against the some of the best human Go players on small
boards (MCTS is still not competitive on the standard 19× 19 board) [2].

Monte Carlo Tree Search has several characteristics that have made it successful in
computer Go, “bandit” problems, and other AI applications:

• MCTS does not require any domain-specific knowledge of state or decision values
(e.g., position scoring functions) [2].

• It is an “any time” algorithm [2]. It can always provide an answer, but the answer
will get better with more computation time.

• The algorithm theoretically converges to the optimal policy.

• MCTS balances exploration (sampling decision trajectories that have been sampled a
relatively low number of times in previous iterations) and exploitation (sampling
decision trajectories that have produced favorable results in previous iterations),
resulting in an intelligent sampling from the game tree [2] .

The algorithm consists of two policies: the tree policy and the default (or simulation)
policy.
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2.1.1. The Tree Policy

The tree policy constructs and intelligently samples from the game tree, a network
representation that depicts states as nodes and decisions (or actions) as directional arcs.
Starting at the root node and proceeding down a decision path, the tree policy iteratively
selects child nodes (i.e., actions leading to new states) according to a rule until it reaches a
previously unexplored state.

One tree search rule for that has created effective tree policies is the maximum upper
confidence bound for trees (UCT) [2]. For a child node j,

UCTj = Xj + Cp

√
2 lnn

nj
,

where

Xj is the average reward resulting from the collection of decision paths sampled in
previous iterations that include child node j,

Cp is a nonnegative constant,

n is the number decision paths sampled in previous iterations that include the
current node, and

nj is the number of decision paths sampled in previous iterations that have included
child node j.

A maximum UCT tree policy computes the UCT values for all of a node’s children and
then selects the child node with the maximum value (if the maximum is shared by more
than one child, then one of these children is selected arbitrarily). The expression for UCT
demonstrates how the tree policy balances exploration and exploitation. The first term,
Xj, will favor exploitation of nodes that have consistently returned high reward values in
previous iterations. By containing the number of visits for the child node in the
denominator, the second term encourages exploration and will be larger for lower values of
nj. In a specific case, if a child node j has never been visited the second term causes the
UCTj →∞. Finally, the value for Cp is defined by the user. Browne et al. suggest Cp = 1√

2

and point to theoretical research supporting the use of this value [2].

2.1.2. The Default Policy

Once the tree policy has selected an unexplored node, MCTS executes the default policy.
Beginning at the state represented by the selected node, the algorithm simulates a decision
path according to user-defined rules until the game ends. In many applications, the rule
governing the default policy has been to iteratively select a decision at random from the
available action space [2]. The goal of the default policy is to quickly produce a possible
outcome of the game that could result from the state selected by the tree policy. Once the
default policy reaches a terminal state, the resulting final outcome is scored according to
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its value using a user-defined reward function. The MCTS algorithm then updates the
values for nj and Xj for all nodes j in the decision path identified by the tree policy (nodes
and arcs found by the default policy are not added to the MCTS game tree or updated
with any values).

2.1.3. Algorithm Example

For simplicity, we present an example scenario in which a decision maker must execute a
sequence of binary decisions. In the first iteration, the algorithm begins at the root node.
Because neither of the children have been explored, the UCT for each child node is ∞. The
algorithm randomly picks one of these children (e.g., node “1”) and then executes the
default policy to obtain a reward value (e.g., 0.75). This process is illustrated in figure 2.1.
The algorithm then updates the average reward (Xj) and the number of visits (nj) for the
node selected by the tree policy, used to compute UCT values in the next iteration.

Figure 2.1: MCTS example, first iteration.

In the second iteration again begins at the root node. Note that of the two child nodes, one
now has a finite UCT (node 1, selected during the previous iteration) while the other UCT
is still infinite. Seeking always to maximize UCT, the tree policy selects the other child
node (node “2”) for this iteration and then executes the default policy to obtain a reward
value. See figure 2.2 for an illustration of this iteration. Once the default policy terminates
and findes the reward value, the algorithm updates the average reward and number of
visits for node 2. While it is not strictly necessary to store the overall average reward for
the root node, we do keep track of the total number of iterations in order to compute UCT
values for nodes 1 and 2.
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Figure 2.2: MCTS example, second iteration.

In the third iteration, the algorithm again compares the UCT values for nodes 1 and 2, and
selects the node with the higher value. In our example (see figure 2.3), node 2 has the
higher UCT in this iteration. The tree policy selects node 2, but does not terminate
because this node has already been visited at least once. Instead the tree policy again
compares the UCT values for the child nodes, this time for nodes “3” and “4.” These
nodes represent states that can be reached by actions from the state represented by node 2.
Because neither node 2 child has been selected by the tree policy in previous algorithm
iterations, their UCT values are infinite. The tree policy selects one of them (e.g., node
“4”) randomly and, now that it has identified an unexplored node, the algorithm executes
the default policy to obtain a reward value (figure 2.3). This reward value is used to
update the average reward for node 4 and node 2. The algorithm also updates the number
of visits for the root node, node 2, and node 4.

Beginning as always from the root node, the tree policy selects node 1 in the fourth
iteration because its UCT is higher than that of node 2. Here we note that even though
node 2 has a higher average reward, because it has been visited more than node 1 it has a
lower UCT value (see figure 2.4). The tree policy proceeds by selecting one of node 1’s
child nodes at random because neither of them have been previously visited. From this
selected node, the algorithm runs the default policy and updates the selected nodes’
average reward value and number of visits.

The algorithm proceeds in this fashion until some user defined stopping criterion is
reached. This criterion could be a maximum number of iterations, a fixed amount of
computational time, or a maximum tree size or memory allocation. Once the algorithm
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Figure 2.3: MCTS example, third iteration.

Figure 2.4: MCTS example, fourth iteration.

terminates, it returns the best decision available from the root node, often determined by
the best average reward among the child nodes.
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In summary, the MCTS algorithm executes as follows:

1. While stopping criteria have not been met:

(a) Set current node equal to root node.

(b) Execute the tree policy. While current node is not unexplored:

i. Compute UCTj for all current node child nodes j.

ii. Arbitrarily pick one node from the subset of child nodes
{j′|UCTj′ = maxj[UCTj]}.

iii. Set current node equal to this node.

iv. Store the current node identification index in this iteration set.

(c) Execute the default policy. While current node is not a terminal state:

i. Arbitrarily select an action from the set of possible actions for the current
node.

ii. Set current node equal to the resulting child node.

(d) Compute the reward value associated with terminal state current node.

(e) Update values of Xj and nj for all nodes in this iteration set. Update Xj so
that this average includes the reward value from this iteration. Increment nj by
one.

2. Select the action from the root node that results in the highest average reward, Xj,
from the root node’s children and terminate.

Note that the output of the algorithm is an action to take based on the results of the tree
search. While in the example provided above we choose the action that has shown the
highest average reward, other selection criteria exists. See Browne et al. for discussion of
alternate selection criteria [2]. It is also important to note that the above algorithm runs
each time a decision is required in a scenario.

2.2. The challenges in implementing MCTS into military
simulations

Monte Carlo Tree Search methods have been employed in a wide variety of games including
Connect4, Scrabble, Chess, and Go. Each of these games enables all players to have
immediate, perfect state information. Furthermore, the players’ actions result in
deterministic outcomes, or state transitions.

Unfortunately, these characteristics, desirable from a MCTS implementation perspective,
are typically not characteristics of military simulation environments or military operations.
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Perfect information on locations and activities of enemy elements, on the locations and
activities of friendly elements, or on the terrain are usually not made available to any
entities when constructing and running scenarios in military simulation environments.
Also, actions, such as firing at a target, do not always produce the same results in military
simulation environments, with the consequences determined by the outputs of
pseudo-random number generators.

Successfully implementing MCTS into a military simulation in an applicable way requires
adapting the algorithm so that it can account for:

• Imperfect state information.

• Stochastic outcomes.

Browne et al. mention several adaptations of MCTS tailored for stochastic, imperfect state
information applications [2]. Determinization forms the basis for the method we develop,
which we present in the next chapter [2, p. 13].

Another challenge in implementing MCTS into military simulations is the need to
reproduce and simulate forward from specific intermediate simulation states in the search
tree. The complicated and dynamic nature of military simulation environments makes this
requirement an nontrivial obstacle to successful implementation. Gilmer Jr and Sullivan
discuss these difficulties and introduces several techniques for “multi-trajectory
simulation”, which they define as “[allowing] random events in a simulation to generate
multiple trajectories and [explicitly] managing the set of trajectories” [5]. Gilmer Jr and
Sullivan further discuss the benefits of “recursive” simulation, in which decision entities
within the simulation have the ability to create and run their own instances of the
simulation, using the results to guide their actions [6]. Implementing MCTS in a military
simulation environment is a logical extension to the recursive simulation work done by
Gilmer Jr and Sullivan [6].

In addition to the multi-trajectory simulation techniques provided in Gilmer Jr and
Sullivan, Gilmer Jr and Sullivan, we propose the following methods to overcome some of
the challenges to producing multiple replications of an intermediate simulation state:

• Re-start the simulation from the initial state with the same random seed and make
the same sequence of decisions in order to arrive at the same state. The benefit to
using this method is that it requires storing very little information and allows MCTS
to run as a control almost entirely external to the simulation. One drawback,
however, is that in large scenarios and complex simulation environments, re-running
the simulation multiple times from the initial state through several decision points in
order to reproduce a specific state can consume a large amount of time. Also, this
method somewhat overrides the stochastic nature of the simulation, making outcomes
always deterministic.
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• Abstract the MCTS state space from the simulation state. For the purpose of the
MCTS algorithm, define the state only as the information required by the
decision-maker in choosing a course of action. We can build the search tree on this
information set, instead of on the actual simulation state, and modify the UCT
formula slightly to account for stochastic outcomes. This concept, known as
Information Set UCT (ISUCT), is presented and discussed in Browne et al. [2, p. 13].
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3. Algorithm and Prototype Development

3.1. MCTS in Stochastic Games with Imperfect State
Information

In this section we introduce the partial observation-UCT (PO-UCT) algorithm, an
adaptation of the MCTS UCT algorithm described above and based on the notion of
“determinization” [2]. The purpose of this adaptation is to apply MCTS methods to
stochastic games with partially observed states while staying as close to the original
algorithm as possible. Because stochasticity can generally be considered to be due to lack
of full observability (e.g. the die rolls appear random because we lack full knowledge of the
state of the dice as they are rolled), we can answer both of these issues (stochasticity and
imperfect state information) with a single modification to the algorithm.

We modify the structure of the search tree to contain two different types of nodes,
“chance” and “player” in alternating layers. Chance nodes contain as children various
states that are possible after a given sequence of moves after considering sources of
stochasticity, i.e., the lack of full knowledge of the initial state, or the stochastic effects of
player actions. Player nodes correspond to nodes from the original UCT algorithm. They
contain child chance nodes that represent the possible states that can occur if a player
makes a specific action choice.

The root of the tree is a chance node, with subsequent generations of nodes alternating
between player nodes and chance nodes. Chance nodes contain the action a player took to
get to them, except for the root, which has a ”null” action, as it represents a point in time
before any of the player actions under consideration have been taken. Player nodes contain
a single, fully-specified game state.

The PO-UCT algorithm computes an estimate of the best action for a particular player to
take at a particular point in time. To initiate the algorithm, a set {s1, s2, . . . , sk} of
fully-specified states that are each consistent with the information set of this player must
be provided.

If j is a search tree node, we assume that the following functions are available: type(j),
which is either “chance” or “player”, p(j), which returns the parent node of j, s(j), which
returns the state stored at the node assuming the node type is “player”, a(j), which
returns the action stored at the node assuming the node type is “chance”, and f(s, a),
which returns independent samples of the state distribution resulting from taking action a
in state s. nj is the number of visits to the node (including traversals on the way to a
child), and qj the sum of all quality values produced for this node or its children. ∆(j, p) is
the component of the reward vector ∆ associated with on-move player p at node j. It is
unclear to us under what circumstances dependence upon j is needed, but it has been
retained for consistency with Browne et al. [2]. For example, in a two player zero sum
game, ∆ would always be a two-element vector of values summing to zero, e.g. [x − x]. If

15



is s a state, there is a function A(s) that returns the set of actions that are possible for the
on-move player. Cp is 1/

√
2.

3.1.1. The k-Sample Partial Observation MCTS Algorithm

In this section we provide pseudo-code for our k-sample partial observation (kSPO)
algorithm. This algorithm produces a fixed, user-defined number (k) of “player” nodes
from every chance node in the manner described in the preceding paragraphs.

Figure 3.1: An example kSPO MCTS search tree.

function KSPO-UCTSearch(s1, s2, . . . , sk)
create root chance node jc and player node children jp1, jp2, . . . , jpk with s(jpi) = si
while within computational budget do
jl ← TreePolicy(jc)
∆← DefaultPolicy(s(jl))
Backup(jl,∆)
return a(BestChild(jc, 0))

function TreePolicy(j)
while j is nonterminal do
if type(j) is “chance”
j ← ChanceNodePolicy(j)
if type(j) is “player”
j ← PlayerNodePolicy(j)

return j

function ChanceNodePolicy(j)
if j is not root and has less than k children
j ← TryAction(a(j), p(j), j)
else
j is a node with minimum nj
return j

function PlayerNodePolicy(j)
if an action is untried
choose a in untried actions from A(s(j))
create child chance node jc with a(jc) = a
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j ← TryAction(a, j, jc)
else
j ← BestChild(j, Cp)
return j

function TryAction(a, jp, jc)
add a new child j to jc with s(j) = f(s(jp), a)
return j

function BestChild(j,∆) (Note: this function comes directly from [2].)

return arg max
j′∈{children of j}

qj′

nj′
+ Cp

√
2 lnnj
nj′

function DefaultPolicy(s) (Note: this function comes directly from [2].)
while s is non-terminal do
choose a ∈ A(s) uniformly at random
s← f(s, a)

function Backup(jl,∆) (Note: this function comes directly from [2].)
while j is not null do
nj ← nj + 1
qj ← qj + ∆(j, p)
j ← parent of j

Figure 3.1 depicts a search tree that could result from using this algorithm. The circular
nodes in this tree represent chance nodes, while the square nodes represent player nodes.
The game represented has a binary action space, as indicated by the two arcs descending
from each player node. Each player node represents a complete simulation state and has
associated number of visits (n) and total utility (q) values. Figure 3.1 also depicts example
values for a single player node in the tree. We note that the tree is not symmetric as the
search tree explores and exploits according to the max-UCT rule.

The kSPO MCTS algorithm outlined in this section is unlikely to converge to an optimal
solution for most games, because a finite number of samples, however large, is not sufficient
to represent an arbitrary probability distribution. The algorithm presented in the next
section continually adds additional independent random samples while simultaneously
exploring the existing samples.

3.1.2. The Incrementing Sample Partial Observation (ISPO) Algorithm

In this section we provide pseudo-code for our incrementing sample partial observation
(ISPO) algorithm. This algorithm produces an incrementally growing number (k) of
“player” nodes from every chance node. Let the function g() sample from the distribution
of fully-specified states that are each consistent with the information set of the player
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initially on move. All functions except those provided below are the same as for
kSPO-UCT Algorithm (see paragraph 3.1.1).

function ISPO-UCTSearch(s1, s2, . . . , sk)
generate a state sample s1 = g()
create root chance node jc and player node child jp1 with s(vp1) = s1

while within computational budget do
jl ← TreePolicy(jc)
∆← DefaultPolicy(s(jl))
Backup(jl,∆)
return a(BestChild(jc, 0))

function ChanceNodePolicy(j)
n is the number of children of j
m is the minimum njc for all jc, children of j
if m ≥ n
if j is root
j ← NewInitialState(j)
else
j ← TryAction(a(j), p(j), j)

else
j ← an arbitrary child of j with nj = m
return j

function NewInitialState(jc)
add a new child j to jc with s(j) = g()

return j

Unlike the kSPO MCTS algorithm, the ISPO algorithm continues to create new player
nodes from chance nodes as the tree is explored and populated. As the number of
iterations increases, the ISPO algorithm continues to sample from the distribution of
fully-specified states that are consistent with the information set for the player on move, as
well as from the distribution of outcomes possible for each action. In the limit, the
algorithm will exhaustively sample from each distribution, giving the ISPO algorithm the
same convergence properties as the UCT algorithm developed in Browne et al. [2].
Computationally, however, the kSPO algorithm is much easier to implement and much less
resource intensive to run. Therefore, we based our prototype implementation on the kSPO
algorithm.
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3.2. Prototype Implementation

The purpose of the prototype implementation was to confirm that our kSPO MCTS
algorithm would perform in a simple simulation and to uncover any obstacles that we
might have to overcome to complete more complicated implementations. In this
implementation, we set k = 3 samples per chance node. We built a small scenario in which
four blue entities face off against ten red immobile red entities on a square, featureless
terrain for 30 seconds. See figure 3.2 for a representation of this scenario.

Figure 3.2: Illustration of the prototype scenario.

3.2.1. Action Space

The blue units have two pre-programmed actions:

• Concentrate. Units move towards the nearest point on a circle of fixed radius about
their center of mass (see figure 3.3. They do not stop to shoot when concentrating.

• Hunt. Units move towards the nearest known red position. When they get in range
they stop and repeatedly shoot until they or the target are dead. If no red position is
known, units move towards a point on the terrain sampled from a uniform
distribution. See figure 3.4 for an illustration of this action.

The blue commander picks one of these two options at 0, 10, and 20 seconds into the run.
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Figure 3.3: Illustration of the “concentrate” action.

3.2.2. Reward Function

The reward function for this scenario is the normalized difference in blue and red forces
remaining, i.e., for any terminal node j,

∆(j) =
10 + xs(j) − ys(j)

14
,

where xs(j) is the number of blue forces alive in state s(j) and ys(j) is the number of red
forces alive in state s(j).

3.2.3. Tree Policy

For the tree policy we use the kSPO-UCT policy described in paragraph 3.1.1. We set
k = 3 samples per chance node. Considering the a = 2 actions available at each of p = 3
decision points, the size of the fully-enumerated search tree is

k(ak)p = 3(6)3 = 648 nodes.

The tree depicted in figure 3.1 gives an example of what this search tree might look like
during one iteration of the kSPO MCTS algorithm. In the first iteration, according to the
kSPO MCTS algorithm, the program will generate three complete simulation states based
on the partial information available to the blue forces. The MCTS algorithm proceeds from
these three fully defined states.

3.2.4. Default Policy

We employ a default policy that chooses actions at random for this implementation.
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Figure 3.4: Illustration of the “hunt” action.

3.2.5. Results

The team built the prototype in Javascript. The prototype ran in a few seconds and
produced a searchable tree in according to the kSPO MCTS algorithm. From the
prototype implementation, the team recorded the following lessons learned:

• When implementing MCTS into partially observable games, we must be able to
produce a fully-specified state based on available information. In this case,
implementing the kSPO MCTS algorithm requires building a commander’s situation
sampling function. Representing the commander’s subjective distribution of the
current state of the battle is a difficult research problem that is beyond the scope of
this project.

• Reconstructing an intermediate state in simulation is challenging. It proved easier to
rerun the simulation using the same initial random seed and then to make the same
sequence of decisions that resulted in the desired state.

• When using the kSPO MCTS algorithm, it is important that the k-sized sample of
outcomes (children) from every chance node provide a representative sample of the
outcomes likely to occur in the simulation. While beyond the initial scope of this
project, follow-on implementations of MCTS in military simulation would benefit by
employing importance sampling heuristics.

• The size of the search tree in the kSPO MCTS algorithm can quickly make using this
method intractable. Effective employment of this algorithm requires the user to limit
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the size of the action space (a = 2, a constant in the prototype), the number of
decision points (p = 3 in the prototype), and the number of entities making decisions
(in the prototype, a single blue “commander” made the decision to execute either a
“hunt” or “concentrate” policy). This does not necessarily preclude the use of MCTS
in larger, more complicated scenarios, provided the user scopes the application of
MCTS to a few “important” decision points.

3.3. Fires Allocation Algorithm

In addition to MCTS algorithm development and implementation, the research team also
developed a fires allocation algorithm in order to implement along with the MCTS
algorithm. The intended uses of the fires allocation algorithm include the following:

• As a method of pruning low-payoff options in the MCTS search tree, in the event the
tree becomes too large.

• As a benchmark behavior policy to use in evaluating MCTS in a tactical firefight
scenario.

• To serve as an alternative reward function, instead of using end-of-run metrics to
build the reward value. Using the state value produced by the fires allocation
algorithm in this manner can save time by producing a reward value for a state
without having to run the simulation to completion.

• As a stand-alone behavior to implement in JDAFS or COMBATXXI.

3.3.1. Algorithm Notation and Assumptions

This algorithm assumes two forces, A, and B, are in direct fire contact. Force A consists of
m elements, which we denote as set SA, and force B has n elements, denoted by the set SB.
Each element i ∈ (A ∪B) has one or more weapon systems from set W available to engage
opposing elements. Let Wi ⊂ W be the set of weapon systems element i has available to
engage opposing elements.

If element i ∈ SA fires weapon k ∈ Wi at element j ∈ SB, then we assume in this algorithm
that the time it takes i to kill j follows an exponential distribution with rate λijk. If
element j ∈ SB fires at element i ∈ SA using weapon k ∈ Wj, we assume that the time it
takes for j to kill i is exponentially distributed with rate θjik. For this algorithm we
approximate these kill rates with the following expressions:

λijk =
pijk
∆ijk

,

θjik =
pjik
∆jik

.
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In this expression, pijk (or pjik) is the probability i kills j (or j kills i) by firing a single
round using weapon system k at j (i) in the simulation. This probability is typically a
function of the situational factors such as engagement range, weather conditions, etc., that
might be modeled in the simulation environment, and is employed by the simulation to
determine whether an element dies each time it is engaged by another element. The
quantities ∆ijk and ∆jik represent the periods of the engagement, i.e., 1

∆ijk
gives i’s rate of

fire for weapon system k at target j and 1
∆jik

gives j’s rate of fire for weapon system k at

target i.

3.3.1.1. Forces in Contact as a Markov Process

At any time point, the state of the overall engagement can be delineated by (S ′A, S
′
B), with

S ′A ⊂ SA being the set of A’s remaining units, and S ′B ⊂ SB the set of B’s remaining units.
Now we define a state value function, V (S ′A, S

′
B), defined for states (S ′A, S

′
B) such that

S ′A ⊂ SA and S ′B ⊂ SB, with the exception of state (∅, ∅). This function returns the
probability that force A wins the overall engagement by killing all elements of force B,
conditioned on starting from the state defined by (S ′A, S

′
B), and represents the value of that

state to force A. Note that the value of the state from the perspective of force B is
1− V (S ′A, S

′
B). In this function we implicitly assume that the outcome probabilities can be

completely determined from the current state information, independent of past states,
putting this model in the class of Markov games. Also, note that V (∅, S ′B) = 0 for S ′B 6= ∅
and V (S ′A, ∅) = 1, for S ′A 6= ∅. We assume that overall engagement has zero probability of
entering state (∅, ∅), and leave function V undefined for this state.

3.3.1.2. Fire Allocations

We now define a fire allocation for each force in state (SA, SB). For all
i ∈ SA, j ∈ SB, k ∈ Wi, we define

xijk =

{
1, if A′s unit i fires at B′s unit j using weapon k,
0, otherwise.

Also, for all i ∈ SA, j ∈ SB, k ∈ Wj, we define

yjik =

{
1, if B′s unit j fires at A′s unit i using weapon k,
0, otherwise.

The set of fire allocations for A is

ΠA =

{
x = [xijk] : xijk ∈ {0, 1}, i ∈ SA, j ∈ SB, k ∈ Wi;

∑
j∈SB

∑
k∈Wi

xijk = 1 ∀i ∈ SA

}
.

If each element i ∈ SA has only one weapon system, the number of unique fire allocations
available to A is nm. Assuming each element has at least one weapon system, this value
provides a lower bound on the number of fire allocations available to A. We can also
establish an upper bound as nαm if we know the maximum number of weapons, α, that any
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element i ∈ SA possesses. Similarly, we define the set of fire allocations for B:

ΠB =

y = [yjik] : yjik ∈ {0, 1}, j ∈ SB, i ∈ SA, k ∈ Wj;
∑
i∈SA

∑
k∈Wj

yjik = 1 ∀j ∈ SB

 .

Again by assuming each element j ∈ SB has at least one weapon system and no more than
β weapon systems, we can establish mn as a lower bound and mβn as an upper bound on
the number of fire allocations available to B. We implicitly assume in these definitions that
each element can only engage one target with one weapon system in a fire allocation.

3.3.1.3. The Value of a Fire Allocation

In state (SA, SB), given A’s fire allocation x ∈ ΠA, let

Λj(x) =
∑
i∈SA

∑
k∈Wi

xijkλijk

denote the rate at which element j ∈ SB gets killed. In other words, the amount of time it
takes for A to kill B’s unit j follows an exponential distribution with rate Λj(x), if A uses
fire allocation x. Likewise, given B’s fire allocation y ∈ ΠB in state (SA, SB), let

Θi(y) =
∑
j∈SA

∑
k∈Wj

yjikθjik

denote the rate at which element i ∈ SA gets killed.

Given state (SA, SB), in which A employs fire allocation x and B employs fire allocation y,
we can express the probability that A will eventually win using the law of total probability
and the special characteristics of exponential distributions as

f(x,y) =

∑
j∈SB

Λj(x)V (SA, SB \ {j}) +
∑

i∈SA
Θi(y)V (SA \ {i}, SB)∑

j∈SB
Λj(x) +

∑
i∈SA

Θi(y)

If both A and B employ the optimal fire allocation, then the value of the two-person
zero-sum game defined by the preceding payoff function is then V (SA, SB)—the state value
function for (SA, SB).

Dr. Kyle Lin proves that—in the case in which each element has a single weapon
system—the two-person zero-sum game defined by the preceding payoff function has a
saddle point [9]. In other words, pure strategies suffice to be optimal, and one does not
need to consider mixed strategies. He goes on to give necessary and sufficient conditions for
an optimal fire allocation (x?,y?), and then provides an efficient way of finding the optimal
fires allocations. This algorithm generalizes for cases when one or more element has
multiple weapon systems simply by adding another third dimension to the inputs as we
have demonstrated in the preceding paragraphs.
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3.3.2. Algorithm Development

Lin gives the following necessary and sufficient conditions for (x′,y′) to be an optimal fire
allocation, and a real number v′ to be the state value, in state (SA, SB):

C1. x′ maximizes
∑

j∈SB
Λj(x) · (V (SA, SB \ {j})− v′).

C2. y′ minimizes
∑

i∈SA
Θi(y) · (v′ − V (SA \ {i}, SB)).

C3. f(x′,y′) = v′.

For a full proof, see Lin [9].

We now present the algorithm for finding the optimal fires allocation. Lin proves that this
algorithm always converges to the optimal fires allocation in a finite number of steps [9].

Algorithm

1. Pick v arbitrarily in [0, 1].

2. For v ∈ [0, 1], define

x̂(v) ≡ arg max
x

∑
j∈SB

Λj(x) · (V (SA, SB \ {j})− v),

ŷ(v) ≡ arg min
y

∑
i∈SA

Θi(y) · (V (SA \ {i}, SB)− v).

In case of a tie, break it arbitrarily. Next, compute

T (v) ≡ f(x̂(v), ŷ(v)) =

∑
j∈SB

Λj(x̂(v))V (SA, SB \ {j}) +
∑

i∈SA
Θi(ŷ(v))V (SA \ {i}, SB)∑

j∈SB
Λj(x̂(v)) +

∑
i∈SA

Θi(ŷ(v))
.

3. If T (v) = v, then v is the value of the game and (x̂(v), ŷ(v)) is a saddle point. If
T (v) 6= v, then update v ← T (v), and go to step 2.

MATLAB
TM

code implementing this algorithm is included in Appendix A. This code
includes a clever way of choosing a starting value for v in order to lessen the time it takes

to converge. Appendix A also contains an example MATLAB
TM

script that employs the
fires allocation algorithm.
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4. MCTS Implementation in ASC-U

The implementation of MCTS is the assignment and scheduling problem has a few notable
differences from the other implementations in this project. First, ASC-U is a deterministic
model. Second, ASC-U does not represent an enemy or force-on-force operations. Its
purpose is to schedule aerial assets against a known set of mission areas that occur in time
and space, making it a fully-observable model. In these two characteristics, a MCTS
implementation in ASC-U is more resembles its historical uses in games such as computer
Go than its other implementations in military simulation environments.

4.1. The MCTS Algorithm for ASC-U

In this section we develop an application of the MCTS algorithm for implementation in an
assignment and scheduling problem.

4.1.1. Action Space

Each mission area constitutes a decision point, and decisions are made in sequential order.
In the event that two or more mission areas begin at the same time, the algorithm
arbitrarily orders them. For each mission area (i.e., at each decision point) the algorithm
can assign any single available platform-sensor package combination to the mission
demand, or leave the mission unfulfilled. Platform-sensor package combinations are
available if the equipment is not already obligated to support other mission areas.

Figure 4.1: A three mission-area example, depicted in time.

For example, suppose we have a simple scenario with the three mission areas depicted in
figure 4.1. From the figure, we can see that a platform assigned to mission area 1 (MA1)
cannot execute MA2 or MA3 because these missions begin while MA1 is still in open. A
platform assigned to MA2, however, is available to execute MA3, assuming certain reset
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and refueling constraints are met, because these missions do not overlap. Assuming there
are two platforms available, the first three generations of the resulting search tree are
depicted in figure 4.2. Note that platform availability in the third generation only depends
on actions taken from the root node. Even though the nodes represent the same decision
point with the same platforms available, they still represent different states because the
differences in platform allocations to the first two mission areas might result in different
utility values. Finally, at each decision point there is always the option to leave the mission
unfulfilled. These decisions are represented by the rightmost arcs coming from each node.

Figure 4.2: Given two platforms and the mission areas depicted in figure 4.1, a depiction of
the resulting search tree.

4.1.2. Reward Function

The reward function for a specific assignment of platforms to missions is the objective
function ASC-U uses in its optimization formulation [1]:

∆(j) =
∑
s∈S

∑
a∈A

cs,aXs,a,

where
S is the set of sensor packages,
A is the set of mission areas,
cs,a is the reward for assigning sensor package s ∈ S to mission area a ∈ A, and
Xs,a is a binary variable that takes value 1 if sensor package s ∈ S is assigned to mission

area a ∈ A, 0 otherwise.

4.1.3. Search Algorithm

We consider several variations of the UCT search algorithm:

• The UCT algorithm as described in Browne et al. [2]. The disadvantage to this
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algorithm is that it does not employ domain specific knowledge, and therefore might
waste resources investigating assignments that do not make sense.

• A modification to the UCT algorithm that includes a term for the immediate reward
associated with a particular assignment and does not approach ∞ for unvisited
nodes. This algorithm incorporates domain specific knowledge and might spend more
time investigating better actions. However, it will require a correction that forces it
to also explore the option of no assignment.

• The UCT algorithm employed on a pruned tree. This algorithm will determine the
best n− 1 assignments possible at each node, based on the immediate reward for the
assignment, where n is specified in advance by the user. Then, it will construct the
search tree using only these possible assignments, and the option of no assignment, as
the action space. By ignoring low payoff options this method will limit the size of the
search tree to no more than n actions available from each node. There is risk,
however, in overlooking an assignment with a relatively low immediate payoff that
leads to a better overall assignment.

4.1.4. Default Algorithm

We consider several possible default algorithms:

• Random assignments.

• Greedy assignments. This algorithm selects the best assignment available from the
pool of potential assignments based on immediate reward.

• Epsilon-greedy algorithm [8]. This algorithm either selects the action with the
highest immediate payoff or selects an action at random according to the outcome of
a Bernoulli trial. It represents a compromise between the pure random and pure
greedy assignments.

• Pruned random assignments. This algorithm will randomly select one action from the
set consisting of:

– The best n− 1 assignments possible, based on the immediate reward, where n is
specified in advance by the user.

– The no-assignment option.

4.2. ASC-U Prototype in MATLAB

We created a prototype MCTS implementation in MATLAB aimed at solving the
assignment and scheduling problem. This ASC-U prototype does not have all of the same
capabilities as ASC-U, noteably:
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• It does not allow for multiple launch and recovery sites (LRSs). Instead, it uses a
single LRS located at (0,0).

• It does not allow for LRS repositioning. The LRS is assumed static.

• It does not model any constraints pertaining to ground control stations.

• It does not allow for platforms to move from one mission assignment directly to
another. This is probably the most significant shortcoming of the current MCTS
ASC-U prototype in MATLAB.

• It does not model forward area refueling & rearming points (FARPs).

With additional time, each of these limitations, as well as others not listed, could be
addressed. Specifically, updating the MATLAB prototype to enable platforms to move
from one mission directly to another would require only a modest programming effort.
However, even with these limitations the MCTS ASC-U prototype in MATLAB enables
meaningful analysis and comparison with ASC-U results. Unlike ASC-U, the MCTS
ASC-U prototype in MATLAB does not rely on a rolling horizon heuristic, potentially
enabling for more efficient solutions to similar assignment problems.

The MATLAB functions and script files comprising this prototype are provided with
documentation in Appendix B.

4.2.1. Prototype Algorithm and Data Requirements

As a tree policy, the MATLAB prototype employs the standard UCT algorithm described
in Browne et al. [2]. It uses random assignments as the default policy. It requires three
arrays of data as input:

• A platform array, which provides the operational endurance, operating speed, and
reset time for each platform-sensor package combination. The reset time is the
amount of time the platform must remain on the ground after landing following a
mission.

• A mission array, which provides mission number, mission start time, mission
duration, mission location (x and y coordinates), and value rate for each mission.

• A performance array, which provides a mission effectiveness coefficient for each
platform-sensor package against each mission.

The state space and action space follow the definitions provided above. If a platform is
available to take off and cover any part of a mission, the prototype creates a node for it for
exploration. The reward for a specific platform-sensor package combination, p, assigned to
a single mission, m is:

(td − ta) ·Rm · Vp,m,
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where
td is the time the platform-sensor package departs the mission area,
ta is the time the platform-sensor package arrives at the mission area,
Rm is the value rate for mission m, and
Vp,m is the effectiveness coefficient for assigning platform p to mission m.

Total reward is simply the sum of all individual assignment rewards. Finally, we scale the
value for the constant Cp in the UCT expression (see section 2.1.1) to account for total
possible reward given unlimited assets:

Cp =
1√
2

(∑
m∈A

dm ·Rm

)
where
A is the set of missions (or mission areas),
dm is the duration of mission m, and
Rm is the value rate for mission m.

4.3. Testing and Results

We conduct two simple tests using the prototype. Both tests serve the purpose of verifying
that the algorithm produces a feasible schedule that makes sense based on the inputs. The
first test is an attempt to reproduce the results from ASC-U testing documented in
Modeling Updates in Support of Armed Aerial Scout [4]. The second test provides a more
complicated input data set and observes the effect of changing the number of MCTS
iterations prior to making a decision.

4.3.1. First test: Verification Using a Simple Input Scenario

The first verification test consists of three cases, each a simple scenario consisting of one
platform-sensor combination and four missions. The purpose of this test is to verify the
functionality of the ASC-U prototype and ensure that the output makes sense.

4.3.1.1. Input Data

For these three cases, the mission and performance input arrays remain constant; only
the platform speed and operational endurance parameters are varied. Table 4.1 shows the
input platform vector for each of the three cases. Tables 4.2 and 4.3 show the set of
missions and performance coefficients respectively for the three cases. As the performance
coefficients indicate, for this test we assume that the platform has the capability required
to accomplish each mission with 100% effectiveness. Finally, table 4.4 gives the value for
the constant, Cp, in the UCT expression and the number of iterations, B used to define the
computational budget, or stopping criteria, for the MCTS algorithm. As mentioned
previously, we scale the value of Cp for this scenario by multiplying by total mission value.
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The computational budget input, B, is the number of times the algorithm iterates through
the tree policy, the default policy, and the back-propagation steps of the MCTS algorithm
before returning a decision and moving on to the next decision in the process (see sections
2.1.3, 3.1.1, and 3.1.2).

Case Platform Endurance Speed Reset
1 1 4.00 250.00 8.00
2 1 4.00 3125.00 8.00
3 1 10.00 3125.00 0.50

Table 4.1: Platform inputs for cases 1-3.

Mission # Start time Duration x coordinate y coordinate Value rate
1 0.00 16.00 100.00 0.00 1.00
2 0.00 4.00 500.00 0.00 60.00
3 5.00 4.00 900.00 0.00 20.00
4 12.00 4.00 900.00 0.00 100.00

Table 4.2: Mission inputs for cases 1-3.

Platform Mission #1 Mission #2 Mission #3 Mission #4
1 1.00 1.00 1.00 1.00

Table 4.3: Performance inputs for cases 1-3.

Parameter Value
Cp

1√
2

(∑
m∈A dmRm

)
= 736√

2

B 100

Table 4.4: UCT constant and computational budget for cases 1-3.

4.3.1.2. Results

The ASC-U prototype using MCTS in MATLAB performed as one might expect against
the simple data inputs for this test. In each case, the schedule produced clearly represents
a good course of action within the feasible set of alternatives. Table 4.5 provides the
objective value and runtime for each of the three cases. The following paragraphs give the
results for each of the three input cases that comprise the first test.

Objective Value runtime (seconds)
Case 1 6.4000 1.3420
Case 2 563.2000 1.3880
Case 3 595.2000 1.2790

Table 4.5: Objective values and runtimes for cases 1-3.
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Case 1

For case 1, the ASC-U protoype produced the schedule shown in table 4.6 and depicted in
figure 4.3. In the figure, the red horizontal lines represent the four missions and the black
lines represent the platform traveling to the mission area, remaining on station (and
accruing value), and then returning to the LRS. We find that the platform executes the
lowest priority mission until its operational endurance expires. Then the platform lands,
resets and and returns to the lowest priority mission for a second sortie. This case served
as the base case to test the functionality of the MATLAB ASC-U implementation. The
platform does not perform any of the higher priority missions because they are out of its
range as constrained by its speed and operational endurance. These results were not
consistent with the ASC-U results, most likely because our platform speed is set too slow.

Platform Mission # Take-off Arrive Depart Land
1 1 -0.40 0.00 3.20 3.60
1 1 11.60 12.00 15.20 15.60

Table 4.6: Schedule produced for case 1.

Figure 4.3: Visual depiction of schedule for case 1.
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Case 2

In case 2, we take the input scenario from case 1 and increase the platform speed in order
to enable it to reach all missions. We choose a platform speed 3125 (see table 4.1 in order
to make the travel time to mission #2 take 0.16 time units, consistent with the outputs in
previous testing (see Buss et al. [4]). The prototype produced a schedule resulting in a total
mission value score of 563.2. While this objective does not match the objective value from
the previous tests in ASC-U, the schedule produced (see table 4.7) is essentially the same
as that produced in the first scenario in Buss et al. [4]. Figure 4.4 depicts this schedule.
Because of the eight-unit reset time, the schedule produced leaves mission #3 unfilled.

Platform Mission # Take-off Arrive Depart Land
1 2 -0.16 0.00 3.68 3.84
1 4 11.84 12.13 15.55 15.84

Table 4.7: Schedule produced for case 2.

Figure 4.4: Visual depiction of schedule for case 2.
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Case 3

In this case we increase the operational endurance of the aircraft from 4 time units to 10.
We also decrease the reset time to 0.5 time units, diverging from the previous tests, which
held the reset time constant, at eight time units. The reason for our divergence from the
documented ASC-U tests (see Buss et al. [4]) is that the remainder of the previous tests
involved platforms conducting multiple missions without landing, a capability which does
not yet exist in the MATLAB prototype. Making the reset time very small, on the other
hand, enables many interesting courses of action for assignment and scheduling.

The results highlight both the capabilities and the limitations of this current
implementation. The schedule given in table 4.8 and depicted in figure 4.5 show a mission
assignment that makes sense and covers all of the high priority missions, but it is also clear
that we could do better with the following capabilities:

1. Enable platforms finishing missions to re-route to other missions, instead of returning
to the LRS.

2. Enable platforms on low priority missions to be re-assigned to higher priority
missions.

3. Enable platforms on low priority missions to depart the mission early in order to
reset and become available to fill a high priority mission.

Platform Mission # Take-off Arrive Depart Land
1 2 -0.16 0.00 4.00 4.16
1 3 4.71 5.00 9.00 9.29
1 4 11.71 12.00 16.00 16.29

Table 4.8: Schedule produced for case 3.
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Figure 4.5: Visual depiction of schedule for case 3.
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4.3.2. Second Test: Examining the Trade-off Between Performance and
Computational Time

In this test we produce a more complicated set of input data and examine the impact of
changing the computational budget (four levels) on the performance and efficiency of the
ASC-U prototype.

4.3.2.1. Input Data

Except for the computational budget, B, the input data for the four cases (cases 4-7) that
comprise this experiment is constant. Table 4.9 shows the number of MCTS iterations per
decision for each case in this test. The test scenario consists of 9 platforms to be scheduled
against 16 missions occurring over a 25 time-unit period. The platform input array is
given in table 4.10, the mission input array is in table 4.11, and the performance input
array is in table 4.12. Most of this data was generated using pseudo-random number
generators to achieve various distributions. Generating data from pseudo-random numbers
introduces the possibility of having many solutions to the problem that have very different
schedules but result in similar, near-optimal objective values. In other words, by using
random data we make the problem difficult to solve to optimality.

The value for Cp is again scaled by the total mission value in the scenario:

Cp =
1√
2

(∑
m∈A

dmRm

)
= 5.9395.

Case B
4 10
5 100
6 1000
7 10000

Table 4.9: Computational budget for cases 4-7.
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Platform Endurance Speed Reset
1 2.18 13.24 5.58
2 1.93 16.33 3.75
3 2.85 11.28 4.65
4 2.48 10.31 4.42
5 1.55 12.18 4.71
6 1.53 14.38 3.59
7 2.03 16.85 2.13
8 1.54 11.38 3.55
9 1.65 14.99 4.46

Table 4.10: Platform inputs for cases 4-7.

Mission # Start time Duration x coordinate y coordinate Value rate
1 0.58 2.18 4.65 4.99 0.64
2 0.68 1.55 3.72 5.86 0.28
3 0.86 0.63 2.38 6.00 0.11
4 1.45 1.33 1.46 2.70 0.28
5 3.42 1.06 0.41 4.90 0.23
6 9.67 2.94 0.98 7.77 0.62
7 11.29 0.56 1.17 0.80 0.99
8 11.51 1.02 1.38 0.64 0.75
9 12.37 3.18 1.72 8.51 0.02
10 13.74 1.24 7.02 9.05 0.67
11 14.03 1.99 7.80 4.30 0.00
12 14.89 1.63 2.57 3.91 0.16
13 15.73 2.13 8.40 5.80 0.18
14 17.60 1.43 9.66 3.29 0.21
15 18.98 0.86 1.32 7.85 0.70
16 20.24 2.90 2.51 2.77 0.10

Table 4.11: Mission inputs for case 4-7.
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Platform
Mission

#1
Mission

#2
Mission

#3
Mission

#4
Mission

#5
Mission

#6
Mission

#7
Mission

#8

1 0.99 0.31 0.54 0.22 0.04 0.76 0.92 0.25
2 0.79 0.04 0.06 0.43 0.19 0.85 0.58 0.44
3 0.51 0.22 0.47 0.51 0.44 0.19 0.30 0.27
4 0.34 0.03 0.19 0.55 0.11 0.63 0.96 0.87
5 0.32 1.00 0.63 0.51 0.22 0.16 0.39 0.51
6 0.81 0.24 0.45 0.73 0.54 0.45 0.22 0.38
7 0.22 0.48 0.09 0.75 0.35 0.81 0.76 0.24
8 1.00 0.94 0.98 0.96 0.47 0.64 0.82 0.08
9 0.05 0.31 0.73 0.38 0.64 0.17 0.66 0.83

Platform
Mission

#1
Mission

#2
Mission

#3
Mission

#4
Mission

#5
Mission

#6
Mission

#7
Mission

#8

1 0.72 0.21 0.03 0.77 0.79 0.66 0.55 0.37
2 0.66 0.65 0.12 0.13 0.63 0.26 0.55 0.68
3 0.07 0.39 0.65 0.97 0.88 0.94 0.25 0.21
4 0.55 0.18 0.99 0.03 0.13 0.92 0.25 0.56
5 0.27 0.15 0.94 0.13 0.30 0.76 0.94 0.92
6 0.84 0.08 0.70 0.03 0.81 0.86 0.53 0.12
7 0.70 0.37 0.82 0.70 0.55 0.34 0.63 0.18
8 0.95 0.14 0.62 0.86 0.21 0.76 1.00 0.09
9 0.98 0.09 0.03 0.48 0.77 0.93 0.87 0.25

Table 4.12: Performance inputs for case 4-7.
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4.3.2.2. Results

Due to the stochastic nature of MCTS, because of the algorithm’s use of pseudo-random
number generators to break ties and to make decisions when executing the default policy,
the results of each case varied, sometimes greatly, for trials initiated with different random
seeds. In order to capture the effect of changing the computational budget, we ran 100
replications for each case and observed the distributions of the results. As one might
expect, the replications of case 7, with 10000 MCTS iterations per decision, took longer
than the replications of the other cases, all of which made decisions using a smaller
computational budget. However, the distribution of the 100 objective value results for case
7 had a higher mean and lower variance than the other cases, so the additional
computational time resulted in improved performance.

Figure 4.6 shows box plots representing the objective value distributions for cases 4-7. The
figure also provides mean objective value (z̄i), median objective value (z̃i), objective value
standard deviation (szi), and mean runtime (t̄i), for each case consisting of
i = 10, 100, 1000, 10000 iterations per decision. We see that case 4, with only 10 MCTS
iterations per decision, performs much less consistently and, on average, somewhat worse
than the cases using 100, 1000, and 10000 iterations per decision. We confirm the general
trend that, by increasing computational budget, we get results that are more consistent
and, on average, better. We also significantly increase the algorithm’s runtime. However,
we note that the performance of the upper quantiles for cases 5 and 6 (with 100 and 1000
iterations, respectively) is comparable to the performance of case 7 (with 10000 iterations),
with only a fraction of the computational cost. This is especially true when looking at the
upper quantiles in each distribution; it appears that the upper quantiles might converge at
a faster rate than the mean, median, or lower quantiles. These results imply that it might
be a better use of time to run multiple replications of the MCTS-ASCU prototype with a
low number of iterations than to run one replication with a large number of iterations.

We now provide example coverage plots, similar to those for cases 1-3, the four cases that
comprise this test. These four plots depict one of the 100 iterations that form the box plots
in figure 4.6. Table 4.13 shows the mission assignments and objective values for these four
example cases, for comparison purposes.
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Figure 4.6: Box plots of objective values for cases 4-7.
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Mission Assignments
Platform Case 4 Case 5 Case 6 Case 7
1 1,6 1,6 1,6,14 1,6,14
2 2,6,13 4,6,9,16 3,6,13 1,6,13
3 10 10 1,10 5,10
4 1,6,16 2,7,13 4,11,16 4,11,16
5 2,12 1,12 2,11 2,9
6 3,9,14 1,13 5,9 5,9
7 4,7,9,15 2,6,11,15 2,6,9,15 2,6,10,15
8 6,12 1,12 4,7,12 4,7,12
9 4,8,15 3,8,14 5,8,15 3,8,15
OBJ 4.953 5.059 5.369 5.658

Table 4.13: Example mission assignments and objective values for cases 4-7.

42



Case 4 Example Output

Using a computational budget of 10 iterations per decision, the MCTS scheduling
algorithm produced the schedule shown in table 4.14. Figure 4.7 gives a visual depiction of
the mission coverage resulting from this schedule. The black horizontal lines indicate a
mission that is covered, while the red horizontal lines indicate a mission that is left
uncovered. It is important to note that these plots do not depict or otherwise account for
how effective the platform is that is assigned to each mission. These mission effectiveness
coefficients, given in table 4.12, are an important consideration in the assignment process.
The runtime for this replication was 2.434 seconds.

Platform Mission # Take-off Arrive Depart Land
4 1 -0.08 0.58 1.74 2.41
5 2 0.11 0.68 1.09 1.66
6 3 0.41 0.86 1.49 1.94
9 4 1.24 1.45 2.68 2.89
2 2 1.02 1.45 2.23 2.65
1 1 1.23 1.74 2.76 3.27
7 4 2.50 2.68 2.78 2.96
4 6 8.91 9.67 10.64 11.40
8 6 9.95 10.64 10.80 11.49
2 6 10.33 10.80 11.78 12.26
7 7 11.20 11.29 11.85 11.93
9 8 11.41 11.51 12.53 12.63
1 6 11.19 11.78 12.62 13.21
6 9 11.76 12.37 12.69 13.29
7 9 14.06 14.58 15.54 16.06
3 10 12.73 13.74 14.56 15.57
5 12 14.50 14.89 15.67 16.05
8 12 15.32 15.73 16.45 16.86
6 14 16.89 17.60 17.72 18.43
2 13 16.98 17.60 17.86 18.48
9 15 18.45 18.98 19.57 20.10
7 15 19.09 19.57 19.84 20.32
4 16 19.88 20.24 22.00 22.36

Table 4.14: Schedule produced for case 4.
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Figure 4.7: Visual depiction of schedule for case 4.
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Case 5 Example Output

Using a computational budget of 100 iterations per decision, the MCTS scheduling
algorithm produced the schedule shown in table 4.15. Figure 4.8 gives a visual depiction of
this schedule. The runtime for this replication was 3.104 seconds.

Platform Mission # Take-off Arrive Depart Land
1 1 0.07 0.58 1.73 2.25
7 2 0.27 0.68 1.88 2.30
9 3 0.43 0.86 1.49 1.92
2 4 1.26 1.45 2.78 2.97
6 1 1.26 1.73 2.32 2.79
4 2 1.21 1.88 2.23 2.90
5 1 1.76 2.32 2.75 3.31
8 1 2.15 2.75 2.76 3.36
2 6 9.19 9.67 10.65 11.13
7 6 10.18 10.65 11.75 12.21
4 7 11.15 11.29 11.85 11.98
9 8 11.41 11.51 12.53 12.63
1 6 11.15 11.75 12.62 13.21
2 9 14.88 15.41 15.54 16.07
3 10 12.73 13.74 14.56 15.57
7 11 14.34 14.87 15.84 16.37
8 12 14.47 14.89 15.61 16.02
6 13 15.02 15.73 15.84 16.55
5 12 15.35 15.73 16.51 16.90
4 13 16.40 17.39 17.86 18.85
9 14 17.09 17.77 18.06 18.74
7 15 18.51 18.98 19.84 20.32
2 16 20.01 20.24 21.72 21.95

Table 4.15: Schedule produced for case 5.
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Figure 4.8: Visual depiction of schedule for case 5.
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Case 6 Example Output

Using a computational budget of 1000 iterations per decision, the MCTS scheduling
algorithm produced the schedule shown in table 4.16. Figure 4.9 gives a visual depiction of
this schedule. The runtime for this replication was 25.21 seconds.

Platform Mission # Take-off Arrive Depart Land
1 1 0.07 0.58 1.73 2.25
5 2 0.11 0.68 1.09 1.66
2 3 0.46 0.86 1.49 1.89
7 2 0.68 1.09 2.23 2.64
8 4 1.18 1.45 2.45 2.72
3 1 1.13 1.73 2.76 3.36
4 4 2.15 2.45 2.78 3.08
9 5 3.09 3.42 4.41 4.74
6 5 4.07 4.41 4.48 4.82
7 6 9.21 9.67 10.77 11.23
1 6 10.18 10.77 11.77 12.36
8 7 11.16 11.29 11.85 11.97
9 8 11.41 11.51 12.53 12.63
2 6 11.29 11.77 12.62 13.09
7 9 13.36 13.88 14.87 15.39
3 10 12.73 13.74 14.56 15.57
4 11 13.17 14.03 14.79 15.65
5 11 14.06 14.79 14.88 15.61
6 9 14.27 14.87 15.20 15.80
8 12 15.52 15.93 16.51 16.93
2 13 16.85 17.47 17.86 18.48
1 14 17.94 18.71 19.04 19.81
9 15 18.45 18.98 19.57 20.10
7 15 19.09 19.57 19.84 20.32
4 16 20.07 20.43 22.19 22.55

Table 4.16: Schedule produced for case 6.
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Figure 4.9: Visual depiction of schedule for case 6.
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Case 7 Example Output

Using a computational budget of 10000 iterations per decision, the MCTS scheduling
algorithm produced the schedule shown in table 4.17. Figure 4.10 gives a visual depiction
of this schedule. The runtime for this replication was 411.49 seconds.

Platform Mission # Take-off Arrive Depart Land
1 1 0.07 0.58 1.73 2.25
7 2 0.27 0.68 1.88 2.30
9 3 0.43 0.86 1.49 1.92
8 4 1.18 1.45 2.45 2.72
2 1 1.31 1.73 2.76 3.17
5 2 1.31 1.88 2.23 2.80
4 4 2.15 2.45 2.78 3.08
6 5 3.08 3.42 4.27 4.61
3 5 3.83 4.27 4.48 4.91
7 6 9.21 9.67 10.77 11.23
1 6 10.18 10.77 11.77 12.36
8 7 11.16 11.29 11.85 11.97
9 8 11.41 11.51 12.53 12.63
2 6 11.29 11.77 12.62 13.09
3 10 12.73 13.74 14.56 15.57
6 9 13.14 13.74 14.07 14.67
4 11 13.17 14.03 14.79 15.65
7 10 13.88 14.56 14.99 15.66
5 9 13.84 14.56 14.68 15.40
8 12 15.52 15.93 16.51 16.93
2 13 16.85 17.47 17.86 18.48
1 14 17.94 18.71 19.04 19.81
9 15 18.45 18.98 19.57 20.10
7 15 19.09 19.57 19.84 20.32
4 16 20.07 20.43 22.19 22.55

Table 4.17: Schedule produced for case 7.

4.4. ASC-U Implementation

The implementation of MCTS in the original ASC-U tool is ongoing. The results and
documentation of this implementation will follow this report in a technical memorandum.
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Figure 4.10: Visual depiction of schedule for case 7.
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5. Future Implementation Directions

In this chapter we develop MCTS applications for future implementation in JDAFS and
COMBATXXI.

5.1. JDAFS Implementation

In JDAFS we consider a scenario loosely based on one of the scenarios used in the
Deployed Force Protection (DFP) study[10]. A coalition (blue) light infantry company
consisting of three platoons and three 60-mm mortars (see figure 5.1) has established a
combat outpost (COP) in order to conduct support and stability operations. One platoon
secures the COP, one platoon mans an observation post and patrols the surrounding area,
one platoon remains in the COP as a quick reaction force, and the mortars remain in the
COP prepared to execute fire missions. The coalition forces have information that there
are three enemy platoons operating in the area.

Coalition Threat

Figure 5.1: The coalition force and threat organizations for the JDAFS scenario.

The threat forces in this scenario consist of a company of dismounted infantry organized
into three platoons and equipped with small arms (see figure 5.1). These platoons will
move to the COP from the south and southwest. The threat will initiate the attack with
one platoon that will maneuver to attack the COP from the southeast. Once the coalition
forces have reacted to this initial attack, the enemy will attack the COP with its main
effort, the remaining two platoons, from the southwest. Figure 5.2, adopted from [10],
depicts this scenario. While this figure depicts many terrain features which were included
in the COMBATXXI scenario build to support the DFP project, JDAFS does not model
the effects of terrain so these features will not have any impact our implementation.

We employ MCTS in this scenario in JDAFS to determine which courses of actions
produce the best results from the perspective of the coalition.

51



Figure 5.2: Concept for the JDAFS scenario.

5.1.1. Action Space

We assume there is a single decision maker controlling the actions of the blue elements. In
defining the action space, we consider the set of information a decision-maker might use to
generate courses of action. Let information vector

I =< E,F >,

where E = {E1, E2, . . . , En}, the set of enemy entities detected by friendly forces, and
F = {F1, F2, . . . , Fm}, the set of friendly (subordinate) elements available to task. We
consider each friendly element and each detected enemy element as a single entity in this
implementation.

We use the information vector, I, to build the action space. We assume that, at each
decision point, each friendly element can either attack one detected enemy or remain idle.
An example decision might be

u =

 f1→e3

f2→e2

f3→Idle

 ,
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which implies that friendly element “1” attacks detected enemy “3,” friendly element “2”
attacks detected enemy “2,” and friendly element “3” remains idle. Note that there are
(n+ 1)m possible decisions at each decision point in this action space, where n is the
number of detected enemy elements and m is the number of friendly elements. Finally, we
will not alter the JDAFS default behaviors, e.g., if an element comes under attack will
automatically defend itself against the threat, regardless of current task.

In order to keep this application tractable, we examine only two decision points of interest
in this scenario corresponding to the first and second enemy platoon detections. We will
employ the JDAFS default behaviors, including assignments made by the constrained value
optimization, to carry out the rest of the simulation.

5.1.2. Reward Function

We employ a normalized function of force difference to measure the utility of a course of
action:

∆(j) =
3 + xs(j) − ys(j)

7
,

where xs(j) is the number of blue forces alive in state s(j) and ys(j) is the number of red
forces alive in state s(j).

5.1.3. Search Algorithm

We use the kSPO-MCTS algorithm described in paragraph 3.1.1. We set k = 2 samples per
chance node. Considering the a = (n+ 1)m actions available at each decision point, the size
of the fully-enumerated search tree for the first decision point is

k

[
2∏

n=1

k (n+ 1)m
]

= 10368 nodes.

In the first iteration, according to the kSPO MCTS algorithm, the program will generate
two complete simulation states based on the partial information available to the blue
forces, including the knowledge that there are a total of three threat platoons in the area.
The MCTS algorithm proceeds from these two fully defined states.

5.1.4. Default Algorithm

The default algorithm for this implementation will be to choose a decision from the action
space at random.

5.1.5. Status of Implementation

The project team has laid some of the programming groundwork for implementation into
JDAFS. In particular, we have created a MCTS method to replace the constrained value
optimizer (CVO) that makes assignments. We have also created the initial test scenario,
discussed in this chapter.
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Figure 5.3: COMBATXXI MCTS test scenario.

5.1.6. Potential Insights

This implementation can provide insights on the applicability of MCTS as an analysis tool
in a recursive simulation environment in several roles, including:

• Mission command analysis.

• Analysis of optimal decisions and decision making.

• Determining the influence of capabilities on decisions and outcomes.

• Sequential design of experiments.

5.2. CombatXXI Implementation

In this section we develop a proof of principle implementation of MCTS for use in
COMBATXXI. COMBATXXI is a high resolution simulation environment, making
computational time and capacity more important to manage in any recursive simulation
efforts. Our scenario consists of a group of “red” riflemen are advancing on a single “blue”
grenadier in a fixed position (see figure 5.3). Armed with an assault rifle (60 rounds) and a
grenade launcher (12 grenades), the grenadier must decide with which weapon to engage
the enemy. By varying the number of red troops advancing on the blue grenadier, we can
use the results of MCTS runs to gain insight into what situations the grenadier should
choose each weapon over the other in order to get the best effects, and when it might be
best to switch weapons during engagements. The red elements will execute COMBATXXI
default behaviors, i.e., they will engage the blue entity once they it is within range. For the
purpose of this analysis, the advancing red troops will remain relatively concentrated. The
results of this analysis might be useful in informing the CombatXXI weapons selection
behavior, which currently simply selects weapons from a weapon-priority list.
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5.2.1. Action Space

We suggest an Information Set UCT (ISUCT)[2] MCTS algorithm for this scenario. We
use the information available to the blue grenadier to populate the search tree. This
information consists of:

• How many red troops the grenadier can see.

• How much ammunition is remaining for each weapon system.

By abstracting the MCTS state space to this information, we limit the size and
dimensionality of the search tree.

The blue grenadier will only make decisions using MCTS if all of the following criteria
apply (these criteria define the decision points in the simulation):

• The grenadier can see one or more enemy elements.

• The grenadier still has the capability (i.e., the ammunition) to use both weapons
systems.

• The grenadier is not currently engaging the enemy based on a previous decision.

Figure 5.4: Decision to engage with the rifle.

At each decision point the blue grenadier takes one of the following two actions (i.e., these
actions comprise the action space):

• Engage with fifteen rounds from the assault rifle (see figure 5.4), or

• Engage with three grenades from the grenade launcher (see figure 5.5).

5.2.2. Reward Function

The reward function at the end of each run is:

∆(j) = 1−
ys(j)
ys0

,

where ys(j) is the number of red troops alive at the end of the simulation run and ys0 is the
number of red troops alive at the beginning of the simulation run.
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Figure 5.5: Decision to engage with grenades.

5.2.3. Search Algorithm

The UCT algorithm serves as the search algorithm for this implementation. We allow for
stochastic outcomes by maintaining the chance node structure developed in the kSPO
algorithm, but we do not control the sampling from stochastic outcomes. Rather, we let
the outcomes develop stochastically but keep in mind that a stochastic outcome only
constitutes a unique state (i.e., node) if the decision information (number of red elements
visible to blue and ammunition remaining) are different from all other outcomes.

5.2.4. Default Algorithm

We consider three default algorithms for this implementation:

• Random weapon selection at decision points.

• COMBATXXI default behavior (i.e., select weapons based on a priority list).

• The fires allocation algorithm, discussed in section 3.3.

5.2.5. Status of Implementation

Currently we have not expended any computation effort into the COMBATXXI
implementation. We plan to focus on this implementation in future work.

5.2.6. Potential Insights

This implementation can provide insights on the applicability of MCTS as an analysis tool
in a high-resolution simulation environment, including:

• Scalability.

• Analysis of optimal decisions and decision making.

• Insight into the impacts of default behaviors.

• Determining the influence of capabilities on decisions and outcomes.
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6. Summary and Conclusions

6.1. Summary

In this project we developed implementations of the Monte Carlo Tree Search algorithm for
applications in military simulation environments and military analyses:

• We developed the kSPO and the ISPO algorithms for implementation in stochastic,
partially observable games and simulations. We produced a simple prototype for the
kSPO and observed the results, which demonstrated a proof-of-principle application.
The Javascript source code for this implementation is available from the authors
upon request. During this implementation we developed workarounds for the
requirement to reproduce state space in a stochastic, partially observable simulation
environment. These workarounds include

– Running the simulation from the start point with the same input data and
random seed to arrive at the same point.

– Abstracting state space from the simulation space for the purpose of building a
simplified game tree from a more complicated simulation state space.

We also determined that limits on computational resources would naturally limit any
application of MCTS in military simulation. It is simply infeasible to have a large
number of entities all simultaneously running independent MCTS algorithms to make
decisions. MCTS will be useful if applied on a small, finite action space of interest,
identified in advance. Determining which decisions go into this action space involves
deciding which decisions involve the “tripping point” issues that serve to inform the
analysis.

• We implemented MCTS as a method for producing good, feasible schedules in a UAV
assignment and scheduling problem. The results of this implementation
demonstrated the usefulness of MCTS methods in other types of TRAC analyses,
especially those involving platform assignment, scheduling, or allocation.

• We outlined scenarios and implementations for MCTS methods into JDAFS, as a
tool for mission command analysis, and into COMBATXXI, as a tool for selecting
the best weapon to use during an engagement.

In addition to the work with MCTS, the project team developed a fires allocation
algorithm that inputs kill probabilities from multiple entities, each with one or more
weapon systems, assigned to two opposing forces and computes the optimal fires
assignment for each entity. We have produced a python-coded behavior for implementing
this algorithm into COMBATXXI.
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6.2. Conclusions

From our work on this project, we arrive at the following conclusions.

1. From the initial prototype implementation, we found that MCTS can function as a
tool for autonomous decision-making in military simulations, or for analyzing the
impact of decision-making in simulation environments. However, any application
must consider the computational resources required. The next step in this line of
research is to develop a working implementation in COMBATXXI or JDAFS for
further analysis.

2. From the ASCU implementation, we identified that MCTS and similar AI methods
might have applications beyond mission command and decision analyses in military
simulation environments. In addition to completing an implementation in the original
ASC-U environment, the next step in this line of research is to use MCTS to solve
problems currently assigned to the Joint Platform Allocation Tool (JPAT), and
compare performance and speed.

3. Finally, the fires allocation algorithm provides an efficient way of determining fires
assignments in a two-sided engagement involving more than two entities. The next
step in this line of research is to implement this algorithm as an entity weapon
selection behavior, or as a fire planning algorithm to represent fire direction center
behavior in COMBATXXI. We also intend to use this behavior in conjunction with
the MCTS implementations in simulation environments, as outlined in section 3.3.

MCTS methods provide a means for arriving at a good decision or sequence of decisions
from a complicated action space in a short amount of time. We look forward to developing
more applications for MCTS to inform TRAC analyses in the future.
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Appendix A. Fires Allocation Algorithm in MATLAB

In this appendix we provide the functional code that executes the fires allocation algorithm
and an example MATLAB script file that provides the inputs, calls the function, and saves
the output fires allocation to memory.

A.1. Algorithm Code

The following code implements the fires allocation algorithm, presented in section 3.3, in

MATLAB
TM

. This code takes as its input matrices representing all “blue” and “red”
elements’ weapon systems and kill probabilities, for all weapon-shooter-target pairings, and
outputs the optimal fire allocation.

solveFireAllocationMP.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% In fire allocation game, there are two players A (or Blue) and B (or Red)

% This program computes the probability that Blue wipes out Red before Red

% wipes out Blue It also returns the optimal fire allocation for Blue on

% Red, and for Red on Blue

%

% Blue has m units and Red has n units. Each unit has up to r different

% ‘‘choices of fire allocation’’ A fire allocation specifies a weapon to use

% and the target, therefore a vector of kill rates on all enemy targets

% lambda is a 3 dimensional matrix size of (r, n, m), with lambda(k,j,i)

% being Blue unit i’s kill rate at Red unit j, if Blue i uses the k-th

% choice theta is a 3 dimensioanl matrix size of (r, m, n), with

% theta(k,i,j) being Red unit j’s kill rate at Blue unit i, if Red j uses

% the k-th choice

%

% There are three return values V: probability A wins x: Blue’s optimal

% choice of fire allocation, m by 1 matrix y: Red’s optimal choice of fire

% allocation, 1 by n matrix

%

% In order to compute V, the program actually computes the optimal

% allocation for each subset of Blue vs each subset of Red, recursively,

% starting with the smallest subset. However, the program only outputs the

% value at the beginning of the game

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [V x y] = solveFireAllocationMP(lambda, theta)

[r n m] = size(lambda); %Blue has m units; Red has n units; each unit has l kill rate profile

mm=2m̂-1; %number of states for Blue; for instance, state 6 -> [0 1 1] -> Blue unit 1 is dead; 2 and 3

alive

nn=2n̂-1; %number of states for Red

% the number of states is mm * nn

lambda = max(lambda, 10(̂-12) * ones(r,n,m)); % use 10(̂-12) to replace a kill rate of 0

theta = max(theta, 10(̂-12) * ones(r,m,n)); % use 10(̂-12) to replace a kill rate of 0

Vmatrix = - ones(mm,nn); %Vmatrix is the matrix for game value in each state, -1 indicates the value has

not been computed

numUnitMatrix = zeros(mm,nn); %compute the number of alive units in each state

for i=1:mm

for j=1:nn
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numUnitMatrix(i,j) = sum(de2bi(i,m)) + sum(de2bi(j,n));

end

end

% find V (Blue’s win prob) for all cases when each team has 1 unit left

for i=1:mm

for j=1:nn

if numUnitMatrix(i,j) == 2 % check if each team has 1 unit

[value blueAlive] = max(de2bi(i,m));

[value redAlive] = max(de2bi(j,n));

blueRate = max(lambda(:, redAlive, blueAlive));

redRate = max(theta(:, blueAlive, redAlive));

Vmatrix(i,j) = blueRate / (blueRate + redRate);

end

end

end

for totalNumUnit = 3:(m+n) % iteratively compute V on the number of total units, starting from 3

for i=1:mm

for j=1:nn

if numUnitMatrix(i,j) == totalNumUnit

blueState = de2bi(i,m)’; % a column of 1s and 0s

redState = de2bi(j,n); % a row of 1s and 0s

% remove each Blue unit and find the resulting win

% probability in addition, the largest would be the

% best lower bound for V

vLB = 0; % 0 is by default a lower bound for win prob

vBlueOneDown = 2 * ones(m,1); %for Blue win probabiliy if Blue loses unit i

% if Blue does not have unit i, then the entry has

% value 2. This way, none of Red unit will fire at Blue

% unit i

if sum(blueState) == 1 % if Blue has only 1 unit, vLB = 0 no change

vBlueOneDown(find(blueState==1)) = 0; % vBlueOneDown has one 0 and all others -1

else

%if Blue has 2 or more units, we can get a better

%lower bound by removing one Blue unit at a time

for k=1:m

if blueState(k)==1 % if Blue unit k is still alive, remove it to see the resulting

win probability

vBlueOneDown(k) = Vmatrix(i-2(̂k-1), j);

vLB = max(vLB, Vmatrix(i-2(̂k-1), j));

end

end

end

% remove each Red unit and find the resulting win

% probability in addition, the smallest would be the

% best upper bound for V

vUB = 1; % 1 is by default an upper bound for win prob

vRedOneDown = - ones(1,n); %for Blue win probabiliy if Red loses unit j

% If Red does not have unit j, then the entry has value

% -1. This way, none of Blue unit will fire at Red unit

% j

if sum(redState) == 1 % if Red has only 1 unit, 1 is the best upper bound

vRedOneDown(find(redState==1)) = 1; % vRedOneDown has one 1 and all others -1

else

%if Red has 2 or more units, we can get a better

%upper bound by removing one Red unit at a time

for k=1:n

if redState(k)==1 % if Red unit k is still alive, remove it to see the resulting

win probability

vRedOneDown(k) = Vmatrix(i, j-2(̂k-1));

vUB = min(vUB, Vmatrix(i, j-2(̂k-1)));

end
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end

end

% begin iteration

V = (vLB+vUB)/2; % intiail guess of V

% initialize x, xOld, and y, yOld: fire allocation

% (which kill rate profile to use)

x = ones(m,1); % column of length m; Blue unit i uses profile x(i)

xOld = zeros(m,1); % keep track of x from the previous iteration

y = ones(1,n); % row of length n; Red unit j uses profile y(j)

yOld = zeros(1,n); % keep track of y from the previous iteration

% iteratively compute the fire allocation; stop only if

% the fire allocations are the same as the previous

% iteration

while (isequal(x,xOld) + isequal(y,yOld) < 2) % stop if x==xOld and y==yOld

xOld = x;

yOld = y;

delta = (vRedOneDown - V) .* redState; % a row of length n

x = blueState .* optAllocate(lambda, delta); %optimal policy for Blue

% if Blue does not have unit i, then the ith place

% is 0

delta = (V - vBlueOneDown) .* blueState; % a column of length m

y = redState .* optAllocate(theta, delta’)’; %optimal policy for Red (transpose)

% if Red does not have unit j, then the jth place

% is 0

alpha = zeros(1,n); % Blue (total) rate at killing Red unit j, j=1,...,n

for k=1:m

if blueState(k) == 1 % if Blue unit i still alive

alpha = alpha + lambda(x(k), :, k);

end

end

alpha = alpha .* redState; % kill rate is only "real" if the corresponding Red unit is

still alive

beta = zeros(m,1); % Red (total) rate at killing Blue unit i, i=1,...,m

for k=1:n

if redState(k) == 1 % if Red unit j still alive

beta = beta + theta(y(k), :, k)’;

end

end

beta = beta .* blueState; % kill rate is only "real" if the corresponding Blue unit is

still alive

% new value for this iteration

V = (sum(alpha .* vRedOneDown) + sum(beta .* vBlueOneDown)) / (sum(alpha) +

sum(beta));

end

Vmatrix(i,j) = V; %end of iteration

% at this point, we have computed on entry in the

% matrix Vmatrix; need to repeat this procedure many

% times

end

end

end

end

% At the end of iteration, we just computed the optimal policy when all

% units are alive V, x, y correspond to the value at the beginning, when

% both A and B have full force, therefore the output

% For 3-dimensional kill rate matrix, and the ‘‘value’’ of killing each

% opposing unit, compute the optimal fire allocation

%

% lambda is the kill rate matrix (size r x n x m); delta a row (size 1 x n)

% optAlc is a column (m x 1), optimal fire allocation

function optAlc = optAllocate(lambda, delta)
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delta;

[r n m] = size(lambda);

productMat = zeros(m, r); % initialize the product

for i=1:m

productMat(i,:) = (lambda(:,:,i) * delta’)’;

end

[maxValue optAlc] = max(productMat, [], 2); % in case of tie, use the profile with smallest ID

A.2. Example Use Script

The following MATLAB script provides example inputs for the fires allocation algorithm,
calls the fires allocation function (code given in section A.2 above), and returns the optimal
fires allocation.

example.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% An example for the fire allocation game, when each unit has multiple

% weapon platforms

%

% Suppose that A (or Blue) has m units and B (or Red) has n units

% Each unit has up to r different "choices of fire allocation"

%

% A fire allocation specifies a "weapon" to use and the "aim", which

% induces a vector of kill rates on all enemy targets

%

% lambda is a 3 dimensional matrix size of (r, n, m), with lambda(k,j,i)

% being Blue unit i’s kill rate on Red unit j, if Blue i uses the k-th

% choice of fire

%

% theta is a 3 dimensioanl matrix size of (r, m, n), with theta(k,i,j)

% being Red unit j’s kill rate on Blue unit i, if Red j uses the k-th

% choice of fire

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Here is an example when Blue has m=2 units and Red has n=3 units; each unit

% has up to r=4 choices of fire allocation

m = 2;

n = 3;

r = 4;

lambda = zeros(r, n, m);

theta = zeros(r, m, n);

lambda(:,:,1) = [

1.3 0 0; % M16 aiming at Red unit 1

0 1.6 0; % M16 aiming at Red unit 2

0 0 0.7; % M16 aiming at Red unit 3

0.6 0.4 0.6]; % M203 aiming at the center of 3 Red units

lambda(:,:,2) = [

1.5 0 0;

0 1.8 0;

0 0 0.4;

0.3 0.3 0.2];
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theta(:,:,1) = [

0.7 0; % M16 aiming at Blue unit 1

0 1.3; % M16 aiming at Blue unit 2

0.1 0.3; % M203 aiming at Blue unit 1 (collateral damage possible)

0.3 0.1]; % M203 aiming at Blue unit 2 (collateral demage possible)

theta(:,:,2) = [

0.6 0;

0 0.7;

0.4 0.4;

0 0]; % use a vector of 0 to deactive this choice

theta(:,:,3) = [

1.5 0;

0 1.1;

0.3 0.4;

0 0];

% use this function to compute

% V: the probability A will win

% x: A’s optimal choice of fire allocation

% y: B’s optimal choice of fire allocation

[V x y] = solveFireAllocationMP(lambda, theta)
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Appendix B. Prototype MCTS ASCU Implementation in
MATLAB

This appendix provides documentation for the MCTS ASCU prototype implementation in
MATLABTM. This code consists of several basic functions that contribute to the execution
of the MCTS algorithm:

• ASCUMCTS.m

• ASCUdefault.m

• createchilds.m

• MDupdate.m

In addition, the code includes several additional functions that assist in analyzing and
documenting the results:

• missionplot.m

• allassignmentplot.m

• assignmentplot.m

• singleassignmentplot.m

• document.m

Finally, the MATLAB files include a script file, ASCU.m, that reads the input database files,
executes the MCTS algorithm, and saves and analyzes the results.

We now provide brief documentation for each of these functions and scripts, along with a
printed copy of the code itself.

B.1. ASCU.m Script File

The ASCU.m MATLAB script file serves as the control for executing the MCTS algorithm.
The script begins by clearing the memory and then reading in the three input data arrays.
The arrays currently come from three sheets in a single MicrosoftTM Excel file.

• MDin. This array contains the mission data, listed in order by increasing start times.
It comes from the sheet labeled ‘MD’ in the input Excel file, and consists of six
columns:
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1. A unique number identifying the mission.

2. The mission start time.

3. The mission duration.

4. The x coordinate of the mission location.

5. The y coordinate of the mission location.

6. The value rate for the mission.

• platform. This array contains the platform data. It comes from the sheet labeled
‘platform’ in the input Excel file, and consists of three columns:

1. The platform endurance.

2. The platform speed.

3. The platform reset time.

• perform. This array contains the platform performance data. It has one row for
every platform and one column for every mission. Entry (i, j) in this array is the
performance coefficient for platform i (the ith row in the platform array) against
mission j (the jth row in the mission array).

After reading the inputs, the ASCU.m script initializes some additional parameters,
including the values for const, the constant Cp in the UCT expression, and cmax, the
number of MCTS iterations allocated to each decision (i.e., the computational budget).
The state platform availability vector savail is set to −∞ for each platform, indicating
that they have not performed any previous missions and area all ready to take off to fulfill
mission requirements. The script also initializes an assignments array.

Once all the parameters have been initialized, the script loops through the current mission
array. For each mission, the script executes the ASCUMCTS.m function. The script records
the decision output by the ASCUMCTS.m function and updates the current mission array,
current mission index (for assignment), and platform availability vector for the next loop.

This loop terminates once the current mission index exceeds the number of rows in the
current mission array. At that point, each of the assignment decisions is stored in the
assignments array. The script then computes the objective value for the assignment and
computes and records the runtime. Following these steps, the script executes and saves the
assignment plots. The first plot generated is either the allassignmentplot.m or the
assignmentplot.m (see explanations below). Only one of these plots should be generated;
the other should be commented out according to user preference. Following this plot, the
script generates a singleassignmentplot.m for each platform.

Finally, the script computes the coverage percentage, in case that value is of interest to the
user. The script runs the document.m function, which produces a LATEXinput file
containing tabulated input data and results for the test case. Finally, the script compiles
the LATEXfile into a portable document format (PDF) file for easy viewing by the user.
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The code for the ASCU.m MATLAB script is below.

ASCU.m

%ASCU Run script

%Written by Chris Marks

%read inputs

%clear

%scenario = 3;

starttime = clock;

MDin = xlsread(sprintf(’../case%u/input%u.xlsx’,scenario,scenario),’MD’); %List missions in order.

platform = xlsread(sprintf(’../case%u/input%u.xlsx’,scenario,scenario),’platform’);

perform = xlsread(sprintf(’../case%u/input%u.xlsx’,scenario,scenario),’perform’);

%initialize

MD = MDin;

const = 1/sqrt(2)*(MDin(:,6)’*MDin(:,3));

%cmax = 100;

savail = zeros(size(platform,1),1);

savail(:,1) = -inf;

assignments = zeros(1,6); %platform, mission, takeoff, arrive, depart, land

counter = 1;

currentMD=1;

while(currentMD <= size(MD,1))

[decision MD currentMD newstate] = ASCUMCTS(currentMD,MD,platform,savail,const,cmax,perform);

assignments(counter,:) = decision;

counter = counter + 1;

savail = newstate;

end

a = [assignments(assignments(:,1) =0,1) assignments(assignments(:,1) =0,2)];

clear performances;

for i = 1:size(a,1)

performances(i) = perform(a(i,1),a(i,2));

end

objective = ((assignments(assignments(:,1) =0,5) - assignments(assignments(:,1) =0,4)) .* performances’)’ *

MDin(assignments(assignments(:,1) =0,2),6);

endtime = clock;

iterationtime = endtime-starttime;

totaltime = 60*60*iterationtime(4) + 60*iterationtime(5)+iterationtime(6);

h = figure(’Color’,’w’);

title(sprintf(’Case %u Results’,scenario));

maxx = max((MDin(:,2)+MDin(:,3))’);

maxy = max(MDin(:,6)’);

scale = [-(2.5/16)*maxx maxx*(1+2.5/16) -(1/100)*maxy maxy*(1+5/100)];

axis(scale);

xlabel(’Time’);

ylabel(’Value Rate’);

missionplot(MDin,scale);

%allassignmentplot(assignments,MDin);

assignmentplot(assignments,MDin);

text(scale(1)+0.05*(scale(2)-scale(1)),scale(4)-0.075*(scale(4)-scale(3)),[’Objective: ’

num2str(objective,4)],’EdgeColor’,’g’,’BackgroundColor’,’g’,’FontSize’,14,’FontWeight’,’bold’);

saveas(h,sprintf(’../case%u/results%u.png’,scenario,scenario),’png’);

close(h);

for p = 1:size(platform,1)

h = figure(’Color’,’w’);

title(sprintf(’Case %u Platform %u Schedule’,scenario,p));

maxx = max((MDin(:,2)+MDin(:,3))’);

maxy = max(MDin(:,6)’);

scale = [-(2.5/16)*maxx maxx*(1+2.5/16) -(1/100)*maxy maxy*(1+5/100)];

axis(scale);

xlabel(’Time’);

ylabel(’Value Rate’);

missionplot(MDin,scale);

singleassignmentplot(assignments,MDin,p);

contr = ((assignments(assignments(:,1)==p,5) - assignments(assignments(:,1)==p,4)) .*

perform(p,assignments(assignments(:,1)==p,2))’)’ * MDin(assignments(assignments(:,1)==p,2),6);
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text(scale(1)+0.05*(scale(2)-scale(1)),scale(4)-0.075*(scale(4)-scale(3)),[’Contribution: ’

num2str(contr,4)],’EdgeColor’,’g’,’BackgroundColor’,’g’,’FontSize’,14,’FontWeight’,’bold’);

saveas(h,sprintf(’../case%u/results%up%u.png’,scenario,scenario,p),’png’);

close(h);

end

assign = assignments(assignments(:,1) =0,:);

document(scenario,assign);

coverage = (sum(assignments(:,5)-assignments(:,4)))/sum(MDin(:,3));

cd(sprintf(’../case%u/’,scenario));

dos(’pdflatex readme.tex’);

cd(’../Current version/’);

%Add multiple LRS capability.

%Add mobile LRS capability.

%Add GRS constraint on number of aircraft in the air

%Add capability to go directly from one mission to the next.

%Add FARP capability.

%Maximum mission value cut-off.

B.2. MCTS Execution Functions

We now provide documentation and code for the five functions that execute the MCTS
algorithm.

B.2.1. ASCUMCTS.m

The ASCUMCTS.m function receives the following inputs:

• currentMD. The index of the current decision mission in the mission array (MDin).

• MDin. The mission array.

• platform. The platform array.

• savail. An array that tracks the most recent landing times of all of the platforms in
the platform array.

• const. The constant Cp, in the UCT expression (see section 2.1.1).

• cmax. The computational budget, B, described in section 4.2.

• perform. The performance array.

The function returns the following outputs:

• decision. This vector includes a platform, a mission assignment, a take-off time, an
on-station time, a mission area departure time, and a landing time.
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• MDout. This vector contains an updated mission array for use as an input to
follow-on decisions.

• missionout. This integer is the index of the next decision mission in the mission
array for future missions, MDout.

• newstate. This array provides updated platform landing times, including those
related to the decision returned.

The function initializes a tree array and a state array for storing the information
structure necessary to support the MCTS algorithm. It executes the tree policy according
to the UCT algorithm. It calls the function MDupdate.m in order to dynamically update
the mission array, MD, based on the decision path the tree policy follows. Each time it
comes to a previously unexplored node, it:

1. Executes the createchilds.m function.

2. Updates the tree and state parameters with the output.

3. Executes the ASCUdefault.m function.

4. Backpropagates the reward.

5. Steps the iteration counter.

Once the iteration counter reaches cmax, the function terminates the tree policy
iterations, selects the best decision node from the set of root node children based on
highest average reward, updates the mission array MDout, and returns the results.

The code for ASCUMCTS.m is below.

ASCUMCTS.m

function [decision MDout missionout newstate] = ASCUMCTS(currentMD,MDin,platform,savail,const,cmax,perform)

%function ASCUMCTS

%Written by Chris Marks

%Pre-process current mission demand.

totalreward = MDin(currentMD:end,3)’*MDin(currentMD:end,6);

%Create tree matrix and state array.

node = 1;

tree(node,:) = [0 currentMD 0 0 0 0 MDin(currentMD,1) 0 0]; %parent, MD, platform assign, n , reward(back),

reward(forward) , mission number, arrive, depart

state(:,node) = savail; %last land times.

%Begin iterations

iteration = 0;

MD = MDin;

while(iteration < cmax)

if tree(node,2) == (size(MD,1) + 1) % we have already reached a terminal state.

r = tree(node, 6);

while node = 0;

tree(node,4) = tree(node,4)+ 1;

tree(node,5) = tree(node,5) + r;
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node = tree(node,1);

end

iteration = iteration + 1;

node = 1;

MD = MDin;

else % we have not reached a terminal state.

if tree(node,4)==0 %node has not been visited

%create children

[newnodes newstates] =

createchilds(MD(tree(node,2),:),platform,state(:,node),tree(node,:),node,tree(node,2),perform);

tree(size(tree,1)+1:size(tree,1)+size(newnodes,1),:)=newnodes;

state(:,size(state,2)+1:size(state,2)+size(newstates,2))=newstates;

%Run the default algorithm

r = ASCUdefault(tree(node,:),state(:,node),MD,platform,perform);

%backpropagate

while node = 0;

tree(node,4) = tree(node,4)+ 1;

tree(node,5) = tree(node,5) + r;

node = tree(node,1);

end

iteration = iteration + 1;

node = 1;

MD = MDin;

else

%select a child IAW the tree policy

UCT = zeros(sum(tree(:,1)==node),2);

ind = 1;

for n=find(tree(:,1)==node)’

if tree(n,4)==0

UCT(ind,:) = [n inf];

else

UCT(ind,:) = [n, tree(n,5)/(totalreward*tree(n,4))+2*const*sqrt(2*log(tree(node,4))/tree(n,4))];

end

ind = ind + 1;

end

if sum(UCT(:,2)==max(UCT(:,2))) > 1 %There exist ties.

ties = UCT(UCT(:,2)==max(UCT(:,2)),1);

node = ties(randi(length(ties)));

else

node = UCT(UCT(:,2)==max(UCT(:,2)),1);

end

[MD tree(node,2)] = MDupdate(MD,tree(tree(node,1),2),tree(node,9));

end

end

end

r=0;

for n = find(tree(:,1)==1)’

if (tree(n,5)/tree(n,4))>=r

r = tree(n,5)/tree(n,4);

if currentMD==size(MD,1)

bests = ’NA’;

else

bests = state(:,n);

end

bestn = tree(n,:); %node, parent, MD, platform assign, n , reward(back), reward(forward)

end

end

%If r = 0, do what? Should automatically make the "no assignment" because

%that is the last child node created.

%Re-calculate timeon, timeoff, update mission matrix

if (bestn(3) == 0)

decision = [0 bestn(7) 0 0 0 0]; %platform, mission, takeoff, arrive, depart, land

else

dist = sqrt(MDin(currentMD,4)^2 + MDin(currentMD,5)^2); %distance to mission

traveltime=dist/platform(bestn(3),2);

decision = [bestn(3) bestn(7) bestn(8)-traveltime bestn(8) bestn(9) bestn(9)+traveltime]; %platform,

mission, takeoff, arrive, depart, land

end
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newstate = bests;

[MDout missionout] = MDupdate(MDin,currentMD,bestn(9));

B.2.2. ASCUdefault.m

The ASCUdefault.m function receives the following inputs from the ASCUMCTS.m function:

• treenode. This vector is the row in the ASCUMCTS.m tree that corresponds to the
current unexplored node identified by the tree policy. It includes the current mission
index in the working MD mission array.

• state. This vector is the state associated with the current node. It provides the
most recent landing times for each platform, corresponding to the current node.

• MD. This array is the mission array updated to correspond with the current
unexplored node.

• platform. This array is the platform data array inputted by the user.

• perform. This array is the performance data array inputted by the user.

The function returns the following outputs:

• y. This value is the total mission reward resulting after randomly assigning available
platforms to all missions remaining missions from the current unexplored node to the
end of the mission array.

The function iterates through the following process:

1. Compute the distance and available platforms for the current mission. Available
platforms include any platform that, having completed its previous mission
assignment, has had time to land, reset, and can take-off to fulfill any part of the
current mission requirement.

2. Randomly select one of the available platforms, or none at all.

3. Compute the reward and schedule for the assignment.

4. Update the state vector to include the new assignment schedule.

5. Update the total reward value and treenode for the current decision path.

6. Update the mission array to account for the current mission assignment.
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7. Step the current mission and treenode index values (mission and node).

The function terminates and returns the total reward once it reaches the end of the mission
array.

The code for ASCUdefault.m is below.

ASCUdefault.m

function y = ASCUdefault(treenode,state,MD,platform,perform)

%function ASCUdefault

%Written by Chris Marks

mission = treenode(2);

tree = treenode;

node = 1;

while mission <= size(MD,1)

distance = sqrt(MD(mission,4)^2 + MD(mission,5)^2);

traveltimes = (distance)./platform(:,2);

arrivals = max(MD(mission,2)-traveltimes,state(:,node)+platform(:,3))+traveltimes;

availset = find((2*traveltimes<platform(:,1))&(arrivals <

MD(mission,2)+MD(mission,3))&perform(:,MD(mission,1))>0)’; %available platforms.

index = randi(length(availset)+1); %pick one at random.

if (index == length(availset)+1)

reward = 0;

tree(node+1,:) = [mission 0 0 0 0 tree(node,6)+reward MD(mission,1) 0 0]; %updated "tree" (more of an

assignment list in default algorithm)

if mission < size(MD,1) %Non terminal.

state(:,node+1) = state(:,node); %updated platform availability matrix.

end

[MD mission] = MDupdate(MD,mission,0);

tree(node+1,2)=mission;

node = node+1;

else

avail = availset(index); %Designate platform

traveltime=traveltimes(avail); %Compute travel time

timeon = min(MD(mission,2)+MD(mission,3)-arrivals(avail),platform(avail,1)-2*traveltimes(avail)); %

compute time on.

% reward = (timeon/MD(mission,3))*MD(mission,6)*perform(avail,MD(mission,1)); %compute reward.

reward = (timeon/1)*MD(mission,6)*perform(avail,MD(mission,1)); %compute reward.

tree(node+1,:) = [mission mission+1 avail 0 0 tree(node,6)+reward,MD(mission,1) 0 0]; %updated "tree"

(more of an assignment list in default algorithm)

if mission < size(MD,1)

state(:,node+1) = state(:,node); %updated platform availability matrix.

state(avail,node+1) = min(MD(mission,2)+timeon+traveltime,MD(mission,2)+platform(avail,1)-traveltime); %

update platform landing times.

end

[MD mission] = MDupdate(MD,mission,arrivals(avail)+timeon);

tree(node+1,2)=mission;

node = node+1;

end

end

y = tree(node-1,6);

B.2.3. createchilds.m

The createchilds.m function receives the following inputs:
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• MDmission. This vector contains the current mission data from the mission array (MD
in ASCUMCTS.m).

• platform. This array is the platform data inputted by the user.

• nodestate. This array gives the state information, consisting of most recent landing
times for each platform, associated with the unexplored parent node.

• treenode. This vector gives the node vector from the ASCUMCTS.m tree that
corresponds to the unexplored parent node.

• node. This value is the current unexplored parent node index.

• mission. This is the current mission index in the current mission array.

• perform. This is the platform performance data entered by the user.

The function returns the following outputs:

• newnodes. An array of new node vectors to add to the ASCUMCTS.m tree.

• newstate. An array of new states, consisting of vectors of landing times,
corresponding to each of the new nodes.

The function finds all of the available platforms to accomplish the current mission based on
the state platform availability information and on the mission information. For each
available aircraft, the function computes:

1. The travel time to the mission area.

2. The take-off, mission area arrival, mission area departure, and landing times
associated with assigning the platform to the current (parent node) mission.

3. The reward associated with the assignment.

This information is stored in a node corresponding to each available aircraft, and the
landing times are also stored in a new state vector corresponding to each new node.

After producing a new node for each available platform, the function returns all of these
new nodes, along with their corresponding states.

The code for createchilds.m is below.

createchilds.m

function [newnodes newstate] = createchilds(MDmission,platform,nodestate,treenode,node,mission,perform)

%function createchilds
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%Written by Chris Marks

dist = sqrt(MDmission(4)^2 + MDmission(5)^2); %distance to mission

icounter = 1; %index of new node

for avail = 1:size(nodestate,1) %this line defines the action space.

traveltime=dist/platform(avail,2);

if (2*traveltime < platform(avail,1)) %If the platform can make it to the mission area.

takeoff = max(MDmission(2)-traveltime,nodestate(avail)+platform(avail,3));

arrivetime = takeoff + traveltime;

if (arrivetime < MDmission(2)+MDmission(3)) %if the platform can make it before the mission closes.

departtime = min(MDmission(2) + MDmission(3),arrivetime + platform(avail,1)-2*traveltime);

landtime = departtime + traveltime;

timeon = departtime-arrivetime;

if timeon <0

sprintf(’timeon<0’)

end

% reward = (timeon/MDmission(3))*MDmission(6)*perform(avail,MDmission(1)); %Immediate reward for a

particular action

reward = (timeon/1)*MDmission(6)*perform(avail,MDmission(1)); %Immediate reward for a particular

action

newnodes(icounter,:) = [node mission+1 avail 0 0 treenode(6)+reward MDmission(1) arrivetime

departtime]; %Save the new node.

% if mission = size(MD,1) %Do not want this in

% order to preserve state-node integrity.

newstate(:,icounter) = nodestate;

newstate(avail,icounter) = landtime;

% end

icounter = icounter + 1;

end

end

end

%Create the no assignment child.

newnodes(icounter,:) = [node mission+1 0 0 0 treenode(6) MDmission(1) 0 0];

% if mission = size(MD,1) %We continue to track newstates in

% order to preserve node-state integrity.

newstate(:,icounter) = nodestate;

% end

B.2.4. MDupdate.m

The MDupdate.m function receives the following inputs:

• MD. This array is the current mission array.

• mission. This value is the index of the current mission in the current mission array.

• depart. This value is the time when the platform assigned to complete the current
mission departs the mission area.

The function returns the following outputs:

• MDout. This array is the updated mission array, based on the assigned platform’s
departure time.

• missionout. This value is the index of the current mission for the next iteration.
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This function essentially adds any uncompleted part of any mission back into the mission
array, starting at the time when the assigned platform departs. If no platform is assigned,
it leaves a portion of the mission unfilled but re-inserts it for consideration immediately
following the next mission in the current mission array (MD) that has a later start time.

The code for MDupdate.m is below.

MDupdate.m

function [MDout missionout] = MDupdate(MD,mission,depart)

%function MDupdate

%Written by Chris Marks

missionend = MD(mission,2) + MD(mission,3);

%can make the new mission when aircraft departs, when an aircraft becomes

%available, or when the next mission starts.

if depart == 0 %This means noassign.

MDout = MD;

n = 1;

while (mission+n <= size(MD,1))&&(MD(mission,2)==MD(mission+n,2))

n = n+1;

end

if ((mission + n <= size(MD,1))&&(MD(mission+1,2)<MD(mission,2)+MD(mission,3)))

MDout(mission:mission+n-1,:) = MD(mission+1:mission+n,:);

MDout(mission+n,:) = MD(mission,:);

MDout(mission+n,[2 3]) = [MD(mission+n,2) missionend-MD(mission+n,2)];

missionout = mission;

else

missionout = mission+1;

end

else %There is an assignment

if (mission = size(MD,1))&&(depart < (MD(mission,2)+MD(mission,3)))

n = mission+1;

while ((n<=size(MD,1))&&(MD(n,2)<depart))

n = n+1;

end

MDout(1:n-1,:) = MD(1:n-1,:);

MDout(n,:) = MD(mission,:);

MDout(n,[2 3]) = [depart MD(mission,3)-(depart-MD(mission,2))];

MDout(n+1:size(MD,1)+1,:) = MD(n:end,:);

missionout = mission + 1;

else

MDout = MD;

missionout = mission + 1;

end

end

B.3. Analysis and Documentation Functions

This section provides brief documentation of the analysis and documentation functions
that, while not part of the MCTS algorithm execution, provided for quick, insightful
analysis of the results.
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B.3.1. missionplot.m

The missionplot.m function receives the following inputs:

• MDin. This array is the original mission array input from the user.

• scale. This vector provides the minimum and maximum values for the x and y axes
in the plot.

The function outputs a plot with time on the horizontal axis and mission value on the
vertical axis. Each mission in the mission array is plotted as a horizontal red line depicting
the time period when the mission is “open.” Each red line is plotted at the height
corresponding to the represented mission’s value. The function plots the corresponding
mission number from the user input mission array over each mission’s red line. The
function uses the scale to calculate number positions on the plot.

These plots serve as a an underlay for all of the assignment plots, including those in figures
4.3, 4.4, 4.5, 4.7, 4.8, 4.9, and 4.10.

The code for missionplot.m is below.

missionplot.m

function z = missionplot(MDin,scale)

%function missionplot

%Written by Chris Marks

lwidth = 2;

lcolor = ’r’; %’k’ -> Black,’r’-> Red

x = [MDin(:,2) MDin(:,2)+MDin(:,3)];

y = [MDin(:,6) MDin(:,6)];

z=line(x’,y’,’Color’,lcolor,’LineWidth’,lwidth);

% hoffset = 1.75/26 * (scale(2)-scale(1));

% voffset = 2.5/105 * (scale(4)-scale(3));

% for n = 1:size(MDin,1)

% text((MDin(n,2) + MDin(n,3)/2 - hoffset), MDin(n,6) + voffset,[’Mission ’, int2str(MDin(n,1))]);

% end

hoffset = 0/26 * (scale(2)-scale(1));

voffset = 2.5/105 * (scale(4)-scale(3));

for n = 1:size(MDin,1)

text((MDin(n,2) + MDin(n,3)/2 - hoffset), MDin(n,6) + voffset,

int2str(MDin(n,1)),’HorizontalAlignment’,’center’);

end

B.3.2. allassignmentplot.m

The allassignmentplot.m function receives the following inputs:

• assignments. This array is a complete assignment schedule output coming from the
MCTS algorithm.
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• MDin. This is the original mission array input from the user.

This function returns a plot depicting assignments for all platforms. It is meant to be
overlaid on a mission plot that is already produced. For an example of this plot, see figure
4.3. Figure B.1 shows the output of this function when there are many platforms.

The code for allassignmentplot.m is below.

allassignmentplot.m

function z = allassignmentplot(assignments,MDin)

%function allassignmentplot

%Written by Chris Marks

lwidth = 1.25;

lcolor = ’k’; %’k’ -> Black,’r’-> Red

index = 1;

for j = 1:size(assignments,1)

if(assignments(j,1) = 0)

xx(index,:) = assignments(j,3:6);

m = assignments(j,2);

yy(index,:) = [0 MDin(m,6) MDin(m,6) 0];

index = index + 1;

end

end

z=line(xx’,yy’,’Color’,lcolor,’LineWidth’,lwidth);

Figure B.1: Example allassignmentsplot.m output for multiple platforms.
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B.3.3. assignmentplot.m

The assignmentplot.m function is similar to allassignmentplot.m except that the
resulting plot does not display lines representing platforms’ travels to and from the
missions. Figures 4.8, 4.9, and 4.10 are all outputs from this function.

The code for assignmentplot.m is below.

assignmentplot.m

function z = assignmentplot(assignments,MDin)

%function assignmentplot

%Written by Chris Marks

lwidth = 2;

lcolor = ’k’; %’k’ -> Black,’r’-> Red

index = 1;

for j = 1:size(assignments,1)

if(assignments(j,1) = 0)

xx(index,:) = assignments(j,4:5);

m = assignments(j,2);

yy(index,:) = [MDin(m,6) MDin(m,6)];

index = index + 1;

end

end

z=line(xx’,yy’,’Color’,lcolor,’LineWidth’,lwidth);

B.3.4. singleassignmentplot.m

The singleassignmentplot.m function receives the following inputs:

• assignments. This array is a complete assignment schedule output coming from the
MCTS algorithm.

• MDin. This is the original mission array input from the user.

• platform. This value is the index of the platform of interest in the platform input
array.

The function returns a plot very similar to that returned by the allassignmentsplot.m

function, except that instead of plotting the schedule for all of the platforms, it only
depicts the schedule for the input platform. For example, the single assignment plot for
platform 7, coming from the same scenario (case 5) used to generate figure B.1, is depicted
in figure B.2.

The code for singleassignmentplot.m is below.

singleassignmentplot.m

function z = singleassignmentplot(assignments,MDin,platform)
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%function singleassignmentplot

%Written by Chris Marks

lwidth = 1.25;

lcolor = ’k’; %’k’ -> Black,’r’-> Red

index = 1;

for j = 1:size(assignments,1)

if(assignments(j,1)==platform)

xx(index,:) = assignments(j,3:6);

m = assignments(j,2);

yy(index,:) = [0 MDin(m,6) MDin(m,6) 0];

index = index + 1;

end

end

z=line(xx’,yy’,’Color’,lcolor,’LineWidth’,lwidth);

Figure B.2: Example singleassignmentsplot.m output for platform 7 in case 5.

B.3.5. document.m

The document.m function receives the following inputs:

• x. This value is the number corresponding to the test case.

• assignments. This array is a complete assignment schedule output coming from the
MCTS algorithm.

The function also reads in the three use input arrays pertaining to the test case:
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• platform. The platform data array.

• MDin. The mission data array.

• perform. The performance data array.

The function uses these inputs to write a basic LATEXinput file that documents the inputs
for the test case and the results. The three user input arrays are formatted in tables, the
assignments.m or allassignments.m plot is imported as a figure, and the assignment
schedule is formatted as a table. This output makes it easier to import the results into a
final report format.

The code for document.m is below.

document.m

function y = document(x,assignments)

%function document

%Written by Chris Marks

scenario = x;

MDin = xlsread(sprintf(’../case%u/input%u.xlsx’,scenario,scenario),’MD’); %List missions in order.

platform = xlsread(sprintf(’../case%u/input%u.xlsx’,scenario,scenario),’platform’);

perform = xlsread(sprintf(’../case%u/input%u.xlsx’,scenario,scenario),’perform’);

fid = fopen(sprintf(’../case%u/readme.tex’,scenario),’w’);

fprintf(fid,’\\documentclassarticle\n\n’);
fprintf(fid,’\\usepackagegraphicx\n’);
%fprintf(fid,’\\usepackagelongtable\n’);
fprintf(fid,’\n\n\\begindocument\n\n’);
fprintf(fid,’\\sectionCase %u\n\n’,scenario);
fprintf(fid,’\\subsectionInputs\n\n’);
if size(platform,1)==1

fprintf(fid,’In this case we have one platform with the characteristics shown in table \\refplatform%u,
below.\n\n’,scenario);
else

fprintf(fid,’In this case we have %u platforms with the characteristics shown in table \\refplatform%u,
below.\n\n’,size(platform,1),scenario);
end

fprintf(fid,’\\begintable[!hbt]\n\\centering\n\\begintabularcccc \n’);
fprintf(fid,’Platform & Endurance & Speed & Reset \\\\ \\hline \n’);
platform =[(1:size(platform,1))’ platform];

fprintf(fid,’%u & %4.2f & %6.2f & %4.2f \\\\ \n’,platform’);
fprintf(fid,’\\endtabular\n\\captionPlatform inputs for case

%u.\\labelplatform%u\n\\endtable\n\n’,scenario,scenario);
if size(MDin,1)==1

fprintf(fid,’In this case we have one mission with the characteristics shown in table \\refmission%u,
below.\n\n’,scenario);
else

fprintf(fid,’In this case we have %u missions with the characteristics shown in table \\refmission%u,
below.\n\n’,size(platform,1),scenario);
end

fprintf(fid,’\\begintable[!hbt]\n\\centering\n\\begintabularcccccc \n’);
fprintf(fid,’Mission \\# & Start time & Duration & $x$ coordinate & $y$ coordinate & Value rate \\\\ \\hline
\n’);
fprintf(fid,’%u & %4.2f & %4.2f & %4.2f & %4.2f & %4.2f \\\\ \n’,MDin’);
fprintf(fid,’\\endtabular\n\\captionMission inputs for case

%u.\\labelmission%u\n\\endtable\n\n’,scenario,scenario);
fprintf(fid,’Finally, table \\refperform%u provides each platform’’s performance coefficient for each

mission.\n\n’,scenario);
tablestr = blanks(size(perform,2)+2);

tablestr(1:2) = ’c|’;

for i = 3:(size(perform,2)+2)
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tablestr(i)=’c’;

end

perform =[(1:size(perform,1))’ perform];

fprintf(fid,’\\begintable[!hbt]\n\\centering\n\\begintabular%s \n’,tablestr);
fprintf(fid,’Platform ’)

for i = 2:size(perform,2)

fprintf(fid,’& Mission \\#%u ’,i-1);

end

fprintf(fid,’ \\\\ \\hline \n’);
for i = 1:size(perform,1)

fprintf(fid, ’%u ’,perform(i,1));

for j = 2:size(perform,2)

fprintf(fid,’& %3.2f ’,perform(i,j));

end

fprintf(fid,’\\\\ \n’);
end

fprintf(fid,’\\endtabular\n\\captionPerformance inputs for case

%u.\\labelperform%u\n\\endtable\n\n’,scenario,scenario);
fprintf(fid,’\n\n\\subsectionResults\n\n’);
fprintf(fid,’The MCTS scheduling algorithm produced the schedule shown in table \\refassignments%u. Figure

\\refresults%u gives a visual depiction of this schedule.\n\n’,scenario,scenario);
fprintf(fid,’\\begintable[!hbt]\n\\centering\n\\begintabularcccccc \n’);
fprintf(fid,’Platform & Mission \\# & Take-off & Arrive & Depart & Land \\\\ \\hline \n’);
fprintf(fid,’%u & %u & %4.2f & %4.2f & %4.2f & %4.2f \\\\ \n’,assignments’);
fprintf(fid,’\\endtabular\n\\captionSchedule produced for case

%u.\\labelassignments%u\n\\endtable\n\n’,scenario,scenario);
fprintf(fid,’\\beginfigure[!hbt]\n\\centering\n’);
fprintf(fid,’\\fbox\n\\includegraphics[width = 0.95\\textwidth]results%u.png \n \n’,scenario);
fprintf(fid,’\\captionVisual depiction of schedule for case

%u.\\labelresults%u\n\\endfigure\n\n’,scenario,scenario);
fprintf(fid,’\\enddocument’);
fclose(fid);
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